if "calibrate" in cmd: pyapemost.calibrate() # run APEMoST if "run" in cmd: w = pyapemost.watch.ProgressWatcher() w.start() pyapemost.run(max_iterations = 10000, append = False) w.stop() # lets analyse the results if "analyse" in cmd: plotter = pyapemost.analyse.VisitedAllPlotter() plotter.plot() show("chain0.pdf") histograms = pyapemost.create_histograms() i = 1 plt.clf() plt.figure(figsize=(7, 4 * len(histograms))) for k,(v,stats) in histograms.iteritems(): plt.subplot(len(histograms), 1, i) plt.plot(v[:,0], v[:,2], ls='steps--', label=k) plt.legend() print k, stats i = i + 1 plt.savefig("marginals.pdf") show("marginals.pdf") print pyapemost.model_probability()
cmd = sys.argv[1:] if "calibrate" in cmd: pyapemost.calibrate() # run APEMoST if "run" in cmd: w = pyapemost.watch.ProgressWatcher() w.start() pyapemost.run(max_iterations=10000, append=False) w.stop() # lets analyse the results if "analyse" in cmd: plotter = pyapemost.analyse.VisitedAllPlotter() plotter.plot() show("chain0.pdf") histograms = pyapemost.create_histograms() i = 1 plt.clf() plt.figure(figsize=(7, 4 * len(histograms))) for k, (v, stats) in histograms.items(): plt.subplot(len(histograms), 1, i) plt.plot(v[:, 0], v[:, 2], ls='steps--', label=k) plt.legend() print(k, stats) i = i + 1 plt.savefig("marginals.pdf") show("marginals.pdf") print(pyapemost.model_probability())
if "calibrate" in cmd: pyapemost.calibrate() # run APEMoST if "run" in cmd: w = pyapemost.watch.ProgressWatcher() w.start() pyapemost.run(max_iterations = 10000, append = False) w.stop() # lets analyse the results if "analyse" in cmd: plotter = pyapemost.analyse.VisitedAllPlotter() plotter.plot() show("chain0.pdf") histograms = pyapemost.create_histograms() i = 1 plt.clf() plt.figure(figsize=(7, 4 * len(histograms))) for k,(v,stats) in histograms.items(): plt.subplot(len(histograms), 1, i) plt.plot(v[:,0], v[:,2], ls='steps--', label=k) plt.legend() print(k, stats) i = i + 1 plt.savefig("marginals.pdf") show("marginals.pdf") print(pyapemost.model_probability())