Example #1
0
def test_numpy_subclass_serialization():
    # Check that we can properly serialize subclasses of np.ndarray.
    class CustomNDArray(np.ndarray):
        def __new__(cls, input_array):
            array = np.asarray(input_array).view(cls)
            return array

    def serializer(obj):
        return {'numpy': obj.view(np.ndarray)}

    def deserializer(data):
        array = data['numpy'].view(CustomNDArray)
        return array

    context = pa.default_serialization_context()

    context.register_type(CustomNDArray, 'CustomNDArray',
                          custom_serializer=serializer,
                          custom_deserializer=deserializer)

    x = CustomNDArray(np.zeros(3))
    serialized = pa.serialize(x, context=context).to_buffer()
    new_x = pa.deserialize(serialized, context=context)
    assert type(new_x) == CustomNDArray
    assert np.alltrue(new_x.view(np.ndarray) == np.zeros(3))
Example #2
0
 def deserialize_or_output(data_tuple):
     if data_tuple[0] == use_meta:
         return data_tuple[1].to_pybytes()
     else:
         if data_tuple[1] is None:
             return pa.plasma.ObjectNotAvailable
         else:
             return pa.deserialize(data_tuple[1])
Example #3
0
def test_tensor_alignment():
    # Deserialized numpy arrays should be 64-byte aligned.
    x = np.random.normal(size=(10, 20, 30))
    y = pa.deserialize(pa.serialize(x).to_buffer())
    assert y.ctypes.data % 64 == 0

    xs = [np.random.normal(size=i) for i in range(100)]
    ys = pa.deserialize(pa.serialize(xs).to_buffer())
    for y in ys:
        assert y.ctypes.data % 64 == 0

    xs = [np.random.normal(size=i * (1,)) for i in range(20)]
    ys = pa.deserialize(pa.serialize(xs).to_buffer())
    for y in ys:
        assert y.ctypes.data % 64 == 0

    xs = [np.random.normal(size=i * (5,)) for i in range(1, 8)]
    xs = [xs[i][(i + 1) * (slice(1, 3),)] for i in range(len(xs))]
    ys = pa.deserialize(pa.serialize(xs).to_buffer())
    for y in ys:
        assert y.ctypes.data % 64 == 0
Example #4
0
def test_serialize_with_pandas_objects():
    df = pd.DataFrame({'a': [1, 2, 3]}, index=[1, 2, 3])

    data = {
        'a_series': df['a'],
        'a_frame': df
    }

    serialized = pa.serialize(data).to_buffer()
    deserialized = pa.deserialize(serialized)
    assert_frame_equal(deserialized['a_frame'], df)
    assert_series_equal(deserialized['a_series'], df['a'])
Example #5
0
def test_set_pickle():
    # Use a custom type to trigger pickling.
    class Foo(object):
        pass

    context = pa.SerializationContext()
    context.register_type(Foo, 'Foo', pickle=True)

    test_object = Foo()

    # Define a custom serializer and deserializer to use in place of pickle.

    def dumps1(obj):
        return b'custom'

    def loads1(serialized_obj):
        return serialized_obj + b' serialization 1'

    # Test that setting a custom pickler changes the behavior.
    context.set_pickle(dumps1, loads1)
    serialized = pa.serialize(test_object, context=context).to_buffer()
    deserialized = pa.deserialize(serialized.to_pybytes(), context=context)
    assert deserialized == b'custom serialization 1'

    # Define another custom serializer and deserializer.

    def dumps2(obj):
        return b'custom'

    def loads2(serialized_obj):
        return serialized_obj + b' serialization 2'

    # Test that setting another custom pickler changes the behavior again.
    context.set_pickle(dumps2, loads2)
    serialized = pa.serialize(test_object, context=context).to_buffer()
    deserialized = pa.deserialize(serialized.to_pybytes(), context=context)
    assert deserialized == b'custom serialization 2'
def test_buffer_serialization():

    class BufferClass(object):
        pass

    def serialize_buffer_class(obj):
        return pa.frombuffer(b"hello")

    def deserialize_buffer_class(serialized_obj):
        return serialized_obj

    pa._default_serialization_context.register_type(
        BufferClass, "BufferClass", pickle=False,
        custom_serializer=serialize_buffer_class,
        custom_deserializer=deserialize_buffer_class)

    b = pa.serialize(BufferClass()).to_buffer()
    assert pa.deserialize(b).to_pybytes() == b"hello"
Example #7
0
def test_buffer_serialization():

    class BufferClass(object):
        pass

    def serialize_buffer_class(obj):
        return pa.py_buffer(b"hello")

    def deserialize_buffer_class(serialized_obj):
        return serialized_obj

    context = pa.default_serialization_context()
    context.register_type(
        BufferClass, "BufferClass",
        custom_serializer=serialize_buffer_class,
        custom_deserializer=deserialize_buffer_class)

    b = pa.serialize(BufferClass(), context=context).to_buffer()
    assert pa.deserialize(b, context=context).to_pybytes() == b"hello"
Example #8
0
def test_serialize_with_pandas_objects():
    df = pd.DataFrame({'a': [1, 2, 3]}, index=[1, 2, 3])
    s = pd.Series([1, 2, 3, 4])

    data = {
        'a_series': df['a'],
        'a_frame': df,
        's_series': s
    }

    serialized = pa.serialize(data).to_buffer()
    deserialized = pa.deserialize(serialized)
    assert_frame_equal(deserialized['a_frame'], df)

    assert_series_equal(deserialized['a_series'], df['a'])
    assert deserialized['a_series'].name == 'a'

    assert_series_equal(deserialized['s_series'], s)
    assert deserialized['s_series'].name is None
Example #9
0
def unpack(data):
    if LZ4_ENABLED:
        data = base64.b64decode(data)
        data = lz4.frame.decompress(data)
        data = pyarrow.deserialize(data)
    return data
Example #10
0
def unpack(data):
    if SNAPPY_ENABLED:
        data = base64.b64decode(data)
        return pyarrow.deserialize(snappy.decompress(data))
    else:
        return data
Example #11
0
def test_lmdb_get_put_with_variant_id():
    ddir = get_data_dir()
    with open(ddir + "/raw/v1.3/training_data/sample_variant_ids.pkl",
              'rb') as f:
        varids = pickle.load(f)
    inputfile = \
        get_data_dir() + "/raw/v1.3/training_data/training_data.imputed.csv"
    separator = ','
    choose = 8
    lmdbpath = ddir + "/tests/lmdb_2"

    rows = {"variant_ids": [], "row_infos": []}
    with open(inputfile) as input_file:
        _ = next(input_file)  # skip header line
        row_number = 0
        row_example = None
        for row in tqdm(input_file):
            row = np.array(row.split(separator), dtype=np.float16)
            rows["variant_ids"].append(varids.iloc[row_number, 0])
            rows["row_infos"].append(row)
            row_number += 1
            if row_number > 10:
                row_example = (row, varids.iloc[row_number, 0])
                break

    map_size = cadd_serialize_string_row(row_example[0], row_example[1],
                                         separator, np.float16,
                                         0).to_buffer().size
    map_size = map_size * varids.shape[0] * 1.2
    env = lmdb.Environment(lmdbpath, map_size=map_size, max_dbs=0, lock=False)

    with env.begin(write=True, buffers=True) as txn:
        with open(inputfile) as input_file:
            _ = next(input_file)  # skip header line
            row_number = 0
            for row in tqdm(input_file):
                variant_id = varids.iloc[row_number, 0]
                ser_data = cadd_serialize_string_row(row, variant_id,
                                                     separator, np.float16, 0)

                buf = ser_data.to_buffer()
                print(buf.size)
                txn.put(variant_id.encode('ascii'), buf)

                row_number += 1

                if row_number > 10: break

    find_variant = varids.iloc[choose, 0]
    print("Find variant", find_variant)
    with env.begin(write=False, buffers=True) as txn:
        buf = bytes(txn.get(find_variant.encode('ascii')))

    variant_info = pa.deserialize(buf)['inputs']
    check_variant_info = np.array(rows["row_infos"][choose][1:])

    # if os.path.exists(lmdbpath):
    #    shutil.rmtree(lmdbpath, ignore_errors=True)
    #    os.rmdir(lmdbpath)

    assert np.array_equal(variant_info, check_variant_info)
Example #12
0
def deserialize(data):
    return pyarrow.deserialize(data, mars_serialize_context())
Example #13
0
def deserialize(data):
    try:
        return pa.deserialize(data)
    except (pa.lib.ArrowInvalid, OSError):
        return pickle.loads(data)
Example #14
0
def unpack(data):
    if LZ4_ENABLED:
        data = base64.b64decode(data)
        data = lz4.frame.decompress(data)
        data = pyarrow.deserialize(data)
    return data
Example #15
0
def loads_pyarrow(buf):
    """
    Args:
        buf: the output of `dumps`.
    """
    return pa.deserialize(buf)
Example #16
0
 def from_bytes(cls, pyarrow_bytes):
     return cls(**pa.deserialize(pyarrow_bytes))
Example #17
0
 def load(self, msg):
     return pa.deserialize(msg)
Example #18
0
import numpy as np
import pyarrow as pa

x = np.random.standard_normal(100)

buf = pa.serialize(x).to_buffer()

y = pa.deserialize(buf)

print(x)
print(y)
print(np.allclose(x, y))
Example #19
0
def deserialize(data):
    result = pyarrow.deserialize(data, mars_serialize_context())
    return _patch_pandas_mgr(result)
Example #20
0
def load_pyarrow(buf):
    assert buf is not None, 'buf should not be None.'
    return pyarrow.deserialize(buf)
Example #21
0
 def recv_replay_data(self):
     """Receive replay data from gloal buffer."""
     replay_data_id = self.rep_socket.recv()
     replay_data = pa.deserialize(replay_data_id)
     return replay_data
Example #22
0
    def testPlasmaSharedStore(self):
        import pyarrow
        from pyarrow import plasma

        store_size = 10 * 1024**2
        test_addr = f'127.0.0.1:{get_next_port()}'
        with plasma.start_plasma_store(store_size) as (sckt, _), \
                create_actor_pool(n_process=1, address=test_addr) as pool:
            km_ref = pool.create_actor(PlasmaKeyMapActor,
                                       uid=PlasmaKeyMapActor.default_uid())
            try:
                plasma_client = plasma.connect(sckt)
            except TypeError:
                plasma_client = plasma.connect(sckt, '', 0)
            store = PlasmaSharedStore(plasma_client, km_ref)

            self.assertGreater(store.get_actual_capacity(store_size),
                               store_size / 2)

            session_id = str(uuid.uuid4())
            data_list = [
                np.random.randint(0, 32767, (655360, ), np.int16)
                for _ in range(20)
            ]
            key_list = [str(uuid.uuid4()) for _ in range(20)]

            self.assertFalse(store.contains(session_id, str(uuid.uuid4())))
            with self.assertRaises(KeyError):
                store.get(session_id, str(uuid.uuid4()))
            with self.assertRaises(KeyError):
                store.get_actual_size(session_id, str(uuid.uuid4()))
            with self.assertRaises(KeyError):
                store.seal(session_id, str(uuid.uuid4()))

            fake_data_key = str(uuid.uuid4())
            km_ref.put(session_id, fake_data_key,
                       plasma.ObjectID.from_random())
            self.assertFalse(store.contains(session_id, fake_data_key))
            self.assertIsNone(km_ref.get(session_id, fake_data_key))
            with self.assertRaises(KeyError):
                km_ref.put(session_id, fake_data_key,
                           plasma.ObjectID.from_random())
                store.get(session_id, fake_data_key)
            self.assertIsNone(km_ref.get(session_id, fake_data_key))
            with self.assertRaises(KeyError):
                km_ref.put(session_id, fake_data_key,
                           plasma.ObjectID.from_random())
                store.seal(session_id, fake_data_key)
            self.assertIsNone(km_ref.get(session_id, fake_data_key))
            with self.assertRaises(KeyError):
                km_ref.put(session_id, fake_data_key,
                           plasma.ObjectID.from_random())
                store.get_actual_size(session_id, fake_data_key)
            self.assertIsNone(km_ref.get(session_id, fake_data_key))
            with self.assertRaises(KeyError):
                km_ref.put(session_id, fake_data_key,
                           plasma.ObjectID.from_random())
                store.get_buffer(session_id, fake_data_key)
            self.assertIsNone(km_ref.get(session_id, fake_data_key))
            store.delete(session_id, fake_data_key)

            with self.assertRaises(SerializationFailed):
                non_serial = type('non_serial', (object, ), dict(nbytes=10))
                store.put(session_id, fake_data_key, non_serial())
            self.assertIsNone(km_ref.get(session_id, fake_data_key))
            with self.assertRaises(Exception):
                store.create(session_id, fake_data_key, 'abcd')
            self.assertIsNone(km_ref.get(session_id, fake_data_key))
            with self.assertRaises(StorageFull):
                store.create(session_id, fake_data_key, store_size * 2)
            self.assertIsNone(km_ref.get(session_id, fake_data_key))

            arrow_ser = pyarrow.serialize(data_list[0])
            buf = store.create(session_id, key_list[0], arrow_ser.total_bytes)
            writer = pyarrow.FixedSizeBufferWriter(buf)
            arrow_ser.write_to(writer)
            writer.close()
            store.seal(session_id, key_list[0])

            self.assertTrue(store.contains(session_id, key_list[0]))
            self.assertEqual(store.get_actual_size(session_id, key_list[0]),
                             arrow_ser.total_bytes)
            assert_allclose(store.get(session_id, key_list[0]), data_list[0])
            assert_allclose(
                pyarrow.deserialize(store.get_buffer(session_id, key_list[0])),
                data_list[0])

            with self.assertRaises(StorageDataExists):
                store.create(session_id, key_list[0], arrow_ser.total_bytes)
            self.assertIsNotNone(km_ref.get(session_id, key_list[0]))
            store.delete(session_id, key_list[0])
            del buf

            bufs = []
            for key, data in zip(key_list, data_list):
                try:
                    bufs.append(store.put(session_id, key, data))
                except StorageFull:
                    break
            del bufs
Example #23
0
 def deserialize_regex(serialized, q):
     import pyarrow as pa
     q.put(pa.deserialize(serialized))
Example #24
0
 def loads(o):
     return pyarrow.deserialize(o)
Example #25
0
 def recv(self, name=None, block=True):
     msg = self.socket.recv()
     data = pyarrow.deserialize(msg)
     # data = pickle.loads(msg)
     return data
Example #26
0
def load_pyarrow(buf):
    return pyarrow.deserialize(buf)
Example #27
0
def deserialize_from_file(path):
    with open(path, 'rb') as file:
        data = pa.deserialize(file.read())
    return data
Example #28
0
def deserialize(buf):
	data = pa.deserialize(buf)
	return data
    def __init__(self, noused, db_path, num_groups=16, frames_per_group=1, sample_offset=0, num_clips=1,
                 modality='rgb', dense_sampling=False, fixed_offset=True,
                 image_tmpl='{:05d}.jpg', transform=None, is_train=True, test_mode=False,
                 seperator=' ', filter_video=0, num_classes=None):
        """

        Arguments have different meaning when dense_sampling is True:
            - num_groups ==> number of frames
            - frames_per_group ==> sample every K frame
            - sample_offset ==> number of clips used in validation or test mode

        Args:
            db_path (str): the file path to the root of video folder
            num_groups (int): number of frames per data sample
            frames_per_group (int): number of frames within one group
            sample_offset (int): used in validation/test, the offset when sampling frames from a group
            modality (str): rgb or flow
            dense_sampling (bool): dense sampling in I3D
            fixed_offset (bool): used for generating the same videos used in TSM
            image_tmpl (str): template of image ids
            transform: the transformer for preprocessing
            is_train (bool): shuffle the video but keep the causality
            test_mode (bool): testing mode, no label
        """
        # TODO: handle multi-label?
        # TODO: flow data?

        if modality not in ['flow', 'rgb']:
            raise ValueError("modality should be 'flow' or 'rgb'.")

        self.db_path = db_path
        self.num_groups = num_groups
        self.num_frames = num_groups
        self.frames_per_group = frames_per_group
        self.sample_freq = frames_per_group
        self.num_clips = num_clips
        self.sample_offset = sample_offset
        self.fixed_offset = fixed_offset
        self.dense_sampling = dense_sampling
        self.modality = modality.lower()
        self.image_tmpl = image_tmpl
        self.transform = transform
        self.is_train = is_train
        self.test_mode = test_mode
        self.seperator = seperator
        self.filter_video = filter_video

        if self.modality == 'flow':
            self.num_consecutive_frames = 5
        else:
            self.num_consecutive_frames = 1

        self.multi_label = None

        self.db = None
        db = lmdb.open(self.db_path, max_readers=1, subdir=os.path.isdir(self.db_path),
                       readonly=True, lock=False, readahead=False, meminit=False)
        with db.begin(write=False) as txn:
            self.length = pa.deserialize(txn.get(b'__len__'))
            self.keys = pa.deserialize(txn.get(b'__keys__'))
        db.close()

        # TODO: a hack way to filter video
        self.list_file = db_path.replace(".lmdb", ".txt")

        valid_video_numbers = 0
        invalid_video_ids = []
        for x in open(self.list_file):
            elements = x.strip().split(self.seperator)
            start_frame = int(elements[1])
            end_frame = int(elements[2])
            total_frame = end_frame - start_frame + 1
            if self.test_mode:
                valid_video_numbers += 1
            else:
                if total_frame >= self.filter_video:
                    valid_video_numbers += 1
                else:
                    name = u'{}'.format(elements[0].split("/")[-1]).encode('ascii')
                    invalid_video_ids.append(name)

        print("The number of videos is {} (with more than {} frames) "
              "(original: {})".format(valid_video_numbers, self.filter_video, self.length),
              flush=True)

        # remove keys and update length
        self.length = valid_video_numbers
        self.keys = [k for k in self.keys if k not in invalid_video_ids]

        if self.length != len(self.keys):
            raise ValueError("Do not filter video correctly.")

        self.num_classes = num_classes
Example #30
0
    def __next__(self):
        """
        create a num of tasks  data
        """
        env = self.env

        total_support_x = []
        total_query_x = []
        total_support_y = []
        total_query_y = []

        for t in range(self.t_task):
            # create a task (n_way*k_shot+ n_way*k_query)

            support_x = []
            query_x = []
            support_y = []
            query_y = []

            support_imgs = []
            query_imgs = []

            # select n_way classes randomly
            selected_classes = np.random.choice(self.total_cls, self.n_way)
            # select k_shot + k_query for each class
            for selected_class in selected_classes:
                selected_imgs = np.random.choice(
                    self.dic_img_label[self.num2label[selected_class]], self.k_shot + self.k_query, False)
                support_imgs += selected_imgs[:self.k_shot].tolist()
                query_imgs += selected_imgs[self.k_shot:].tolist()

            with env.begin(write=False) as txn:
                for i, img_id in enumerate(support_imgs):
                    res = pyarrow.deserialize(txn.get(u'{}'.format(img_id).encode('ascii')))
                    support_x.append(np.frombuffer(res[0], np.uint8))
                    support_y.append(np.array([self.label2num[res[1]]]))

                for i, img_id in enumerate(query_imgs):
                    res = pyarrow.deserialize(txn.get(u'{}'.format(img_id).encode('ascii')))
                    query_x.append(np.frombuffer(res[0], np.uint8))
                    query_y.append(np.array([self.label2num[res[1]]]))
            support_x = np.array(support_x)
            query_x = np.array(query_x)
            support_y = np.array(support_y)
            query_y = np.array(query_y)

            # shuffle:
            index = np.random.permutation(len(support_y))
            support_x = support_x[index]
            if not self.fet_global:
                support_y = np.array([i for i in range(self.n_way) for j in range(self.k_shot)])
            support_y = support_y[index]

            index = np.random.permutation(len(query_y))
            query_x = query_x[index]
            if not self.fet_global:
                query_y = np.array([i for i in range(self.n_way) for j in range(self.k_query)])

            query_y = query_y[index]

            # a batch
            total_query_x.append(query_x)
            total_query_y.append(query_y)
            total_support_x.append(support_x)
            total_support_y.append(support_y)

        total_query_x = np.hstack(total_query_x)
        total_query_y = np.hstack(total_query_y)
        total_support_x = np.hstack(total_support_x)
        total_support_y = np.hstack(total_support_y)

        return np.hstack([total_support_x, total_query_x]).tolist(), \
               np.hstack([total_support_y, total_query_y]).reshape([-1, 1])
Example #31
0
 def time_deserialize_from_buffer(self):
     pa.deserialize(self.as_buffer)
Example #32
0
def loads_pyarrow(buf):
    """
    Args:
        buf: the output of `dumps`.
    """
    return pa.deserialize(buf)
Example #33
0
    def __init__(self,
                 path_root,
                 n_way,
                 k_shot,
                 k_query,
                 x_dim,
                 split,
                 augment='0',
                 test=None,
                 shuffle=True,
                 fetch_global=False):
        self.n_way = n_way
        self.k_shot = k_shot
        self.k_query = k_query
        self.x_dim = list(map(int, x_dim.split(',')))
        self.split = split
        self.shuffle = shuffle
        self.path_root = path_root
        self.fet_global = fetch_global

        if augment == '0':
            self.transform = transforms.Compose([
                transforms.Lambda(f1),
                transforms.Resize(self.x_dim[:2]),
                transforms.ToTensor(),
                transforms.Normalize((0.485, 0.456, 0.406),
                                     (0.229, 0.224, 0.225))
            ])
        elif augment == '1':
            if self.split == 'train':
                self.transform = transforms.Compose([
                    # lambda x: Image.open(x).convert('RGB'),
                    transforms.Lambda(f1),
                    transforms.Resize(
                        (self.x_dim[0] + 20, self.x_dim[1] + 20)),
                    transforms.RandomCrop(self.x_dim[:2]),
                    transforms.RandomHorizontalFlip(),
                    transforms.ColorJitter(brightness=.1,
                                           contrast=.1,
                                           saturation=.1,
                                           hue=.1),
                    transforms.ToTensor(),
                    transforms.Normalize((0.485, 0.456, 0.406),
                                         (0.229, 0.224, 0.225))
                ])
            else:
                self.transform = transforms.Compose([
                    # lambda x: Image.open(x).convert('RGB'),
                    transforms.Lambda(f1),
                    transforms.Resize(
                        (self.x_dim[0] + 20, self.x_dim[1] + 20)),
                    transforms.RandomCrop(self.x_dim[:2]),
                    transforms.ToTensor(),
                    transforms.Normalize((0.485, 0.456, 0.406),
                                         (0.229, 0.224, 0.225))
                ])

        self.path = os.path.join(path_root, 'images')

        self.lmdb_file = os.path.join(path_root, "lmdb_data",
                                      "%s.lmdb" % self.split)
        if not os.path.exists(self.lmdb_file):
            print("lmdb_file is not found, start to generate %s" %
                  self.lmdb_file)
            self._generate_lmdb()

        # read lmdb_file
        self.env = lmdb.open(self.lmdb_file,
                             subdir=False,
                             readonly=True,
                             lock=False,
                             readahead=False,
                             meminit=False)
        with self.env.begin(write=False) as txn:
            self.total_sample = pyarrow.deserialize(txn.get(b'__len__'))
            self.keys = pyarrow.deserialize(txn.get(b'__keys__'))
            self.label2num = pyarrow.deserialize(txn.get(b'__label2num__'))
            self.num2label = pyarrow.deserialize(txn.get(b'__num2label__'))

        self.image_labels = [i.decode() for i in self.keys]
        self.total_cls = len(self.num2label)
        self.dic_img_label = defaultdict(list)
        for i in self.image_labels:
            self.dic_img_label[i[:9]].append(i)

        self.support_set_size = self.n_way * self.k_shot  # num of samples per support set
        self.query_set_size = self.n_way * self.k_query

        self.episode = self.total_sample // (
            self.support_set_size + self.query_set_size)  # how many episode

        # create episodes
        self.episode_sets = []

        for i in tqdm(range(self.episode),
                      desc="preparing episodes for %s" % self.split):
            support_imgs, query_imgs = [], []
            # select n_way classes randomly
            selected_classes = np.random.choice(self.total_cls, self.n_way)
            # select k_shot + k_query for each class
            for selected_class in selected_classes:
                selected_imgs = np.random.choice(
                    self.dic_img_label[self.num2label[selected_class]],
                    self.k_shot + self.k_query, False)
                support_imgs += selected_imgs[:self.k_shot].tolist()
                query_imgs += selected_imgs[self.k_shot:].tolist()

            self.episode_sets.append({
                "support_set": support_imgs,
                "query_set": query_imgs
            })
        del self.env
Example #34
0
if __name__ == '__main__':

    model = torch.load(
        '/home/tmr-algorithms/catkin_ws/src/deep-road-segnet/models/unet/model.pt',
        map_location='cpu')
    model.eval()

    context = zmq.Context()
    socket = context.socket(zmq.REP)
    socket.bind("ipc:///tmp/deep")

    while True:
        message = socket.recv()
        print(len(message))

        image = pa.deserialize(message)

        classified_img = predict(model, image)

        message = pa.serialize(classified_img).to_buffer().to_pybytes()

        socket.send(message)

    # X = cv2.imread('/home/bml/images_from_salinas/left0000.jpg')

    # start = time.time()

    # for i in range(1):
    #     y = predict(model, X)

    # end = time.time()
Example #35
0
def deserialize_data(data):
    """deserialize_data"""
    return pyarrow.deserialize(data, context=context)
Example #36
0
def test_serialize_to_buffer():
    for nthreads in [1, 4]:
        for value in COMPLEX_OBJECTS:
            buf = pa.serialize(value).to_buffer(nthreads=nthreads)
            result = pa.deserialize(buf)
            assert_equal(value, result)
Example #37
0
def load(key='test_df'):
    df = pa.deserialize(r.get(key))
    return df
Example #38
0
File: events.py Project: aczh/zmqpc
 def deserialize(self, obj):
     return pyarrow.deserialize(obj)
Example #39
0
def test_serialize_to_buffer():
    for nthreads in [1, 4]:
        for value in COMPLEX_OBJECTS:
            buf = pa.serialize(value).to_buffer(nthreads=nthreads)
            result = pa.deserialize(buf)
            assert_equal(value, result)
Example #40
0
 def deserialize_regex(serialized, q):
     import pyarrow as pa
     q.put(pa.deserialize(serialized))
Example #41
0
def ray_decompress(data):
    if isinstance(data, bytes):
        data = base64.b64decode(data)
        data = lz4.frame.decompress(data)
        data = pyarrow.deserialize(data)
    return data
Example #42
0
    # Read message length and unpack it into an integer
    raw_msglen = recvall(sock, 4)
    if not raw_msglen:
        return None
    msglen = struct.unpack('>I', raw_msglen)[0]
    # Read the message data
    return recvall(sock, msglen)


def recvall(sock, n):
    # Helper function to recv n bytes or return None if EOF is hit
    data = bytearray()
    while len(data) < n:
        packet = sock.recv(n - len(data))
        if not packet:
            return None
        data.extend(packet)
    return data


host = 'localhost'
port = 12345
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((host, port))
data = recv_msg(s)
s.close()

add = pa.deserialize(memoryview(data))

print(add(1, 0))
Example #43
0
    def _load_numpy(self, msg):
        if not msg:
            return msg

        return pa.deserialize(msg)
    def __init__(self,
                 opt,
                 is_training=True,
                 is_testing=False,
                 live_test=False):

        self.node_dim = opt.node_dim
        self.state_dim = opt.state_dim

        self.is_training = is_training
        self.is_testing = is_testing

        if live_test:

            all_data_node_id, all_data_node_type = load_single_program(
                opt.test_graph_path)
            all_data_node_id = np.array(
                all_data_node_id)[0:len(all_data_node_id)]
            all_data_node_type = np.array(
                all_data_node_type)[0:len(all_data_node_type)]

        else:
            base_name = os.path.basename(opt.path)

            if is_training:
                saved_input_filename = "%s/%s-%d-train.pkl" % (
                    opt.path, base_name, opt.n_classes)
            if is_testing:
                saved_input_filename = "%s/%s-%d-test.pkl" % (
                    opt.path, base_name, opt.n_classes)

            if os.path.exists(saved_input_filename):
                input_file = open(saved_input_filename, 'rb')
                buf = input_file.read()
                all_data_node_id, all_data_node_type = pyarrow.deserialize(buf)
                input_file.close()
            else:
                all_data_node_id, all_data_node_type = load_program_graphs_from_directory(
                    opt.path, is_training, is_testing, opt.n_classes)
                all_data_node_id = np.array(
                    all_data_node_id)[0:len(all_data_node_id)]
                all_data_node_type = np.array(
                    all_data_node_type)[0:len(all_data_node_type)]
                buf = pyarrow.serialize(
                    (all_data_node_id, all_data_node_type)).to_buffer()
                out = pyarrow.OSFile(saved_input_filename, 'wb')
                out.write(buf)
                out.close()

        self.pretrained_embeddings = opt.pretrained_embeddings
        self.batch_size = opt.train_batch_size

        label_lookup = {
            label: _onehot(label, opt.n_classes)
            for label in range(0, opt.n_classes)
        }

        self.label_lookup = label_lookup
        # if is_train == True:
        print("Number of all data : " + str(len(all_data_node_id)))
        # else:
        # print("Number of all testing data : " + str(len(all_data_node_id)))
        # self.n_edge_types =  find_max_edge_id(all_data_node_id)
        self.n_edge_types = 7
        # print("Edge types : " + str(self.n_edge_types))
        max_node_id = find_max_node_id(all_data_node_id)
        min_node_id = find_min_node_id(all_data_node_id)
        print("Max node id in data : " + str(max_node_id))
        print("Min node id in data : " + str(min_node_id))
        max_node_type = find_max_node_id(all_data_node_type)
        min_node_type = find_min_node_id(all_data_node_type)
        print("Max node type in data : " + str(max_node_type))
        print("Min node type in data : " + str(min_node_type))
        # print("Max node id : " + str(max_node_id))
        # print("Max node type : " + str(max_node_type))

        self.n_node_by_id = max_node_id
        self.n_node_by_type = max_node_type

        all_data_node_id = convert_program_data(all_data_node_id)
        all_data_node_type = convert_program_data(all_data_node_type)

        self.all_data_node_id = all_data_node_id
        self.all_data_node_type = all_data_node_type

        self.data = self.process_raw_graphs()
Example #45
0
 def time_deserialize_from_buffer(self):
     pa.deserialize(self.as_buffer)
Example #46
0
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

# This file is called from a test in test_serialization.py.

import sys

import pyarrow as pa

with open(sys.argv[1], 'rb') as f:
    data = f.read()
    pa.deserialize(data)