def test_generic_masked_bad_min_max_value(self): _, tpath = tempfile.mkstemp(suffix='.nc', prefix='pyaxiom-test') shutil.copy2(self.input_file, tpath) with EnhancedDataset(tpath, 'a') as ncd: v = ncd.variables['v_component_wind_true_direction_all_geometries'] v.valid_min = 0.1 v.valid_max = 0.1 r = generic_masked(v[:], attrs=ncd.vatts(v.name)) rflat = r.flatten() assert rflat[~rflat.mask].size == 0 # Create a byte variable with a float valid_min and valid_max # to make sure it doesn't error b = ncd.createVariable('imabyte', 'b') b.valid_min = 0 b.valid_max = 600 # this ss over a byte and thus invalid b[:] = 3 r = generic_masked(b[:], attrs=ncd.vatts(b.name)) assert np.all(r.mask == False) # noqa b.valid_min = 0 b.valid_max = 2 r = generic_masked(b[:], attrs=ncd.vatts(b.name)) assert np.all(r.mask == True) # noqa c = ncd.createVariable('imanotherbyte', 'f4') c.setncattr('valid_min', '0b') c.setncattr('valid_max', '9b') c[:] = 3 r = generic_masked(c[:], attrs=ncd.vatts(c.name)) assert np.all(r.mask == False) # noqa c = ncd.createVariable('imarange', 'f4') c.valid_range = [0.0, 2.0] c[:] = 3.0 r = generic_masked(c[:], attrs=ncd.vatts(c.name)) assert np.all(r.mask == True) # noqa c.valid_range = [0.0, 2.0] c[:] = 1.0 r = generic_masked(c[:], attrs=ncd.vatts(c.name)) assert np.all(r.mask == False) # noqa if os.path.exists(tpath): os.remove(tpath)
def to_dataframe(self, clean_cols=True, clean_rows=True): zvar = self.z_axes()[0] zs = len(self.dimensions[zvar.dimensions[0]]) # Profiles pvar = self.get_variables_by_attributes(cf_role='profile_id')[0] try: p = normalize_array(pvar) except ValueError: p = np.asarray(list(range(len(pvar))), dtype=np.integer) ps = p.size p = p.repeat(zs) logger.debug(['profile data size: ', p.size]) # Z z = generic_masked(zvar[:], attrs=self.vatts(zvar.name)).round(5) try: z = np.tile(z, ps) except ValueError: z = z.flatten() logger.debug(['z data size: ', z.size]) # T tvar = self.t_axes()[0] t = nc4.num2date(tvar[:], tvar.units, getattr(tvar, 'calendar', 'standard')) if isinstance(t, datetime): # Size one t = np.array([t.isoformat()], dtype='datetime64') t = t.repeat(zs) logger.debug(['time data size: ', t.size]) # X xvar = self.x_axes()[0] x = generic_masked(xvar[:].repeat(zs), attrs=self.vatts(xvar.name)).round(5) logger.debug(['x data size: ', x.size]) # Y yvar = self.y_axes()[0] y = generic_masked(yvar[:].repeat(zs), attrs=self.vatts(yvar.name)).round(5) logger.debug(['y data size: ', y.size]) # Distance d = np.ma.zeros(y.size, dtype=np.float64) d[1:] = great_distance(start_latitude=y[0:-1], end_latitude=y[1:], start_longitude=x[0:-1], end_longitude=x[1:])['distance'] d = generic_masked(np.cumsum(d), minv=0).round(2) logger.debug(['distance data size: ', d.size]) df_data = {'t': t, 'x': x, 'y': y, 'z': z, 'profile': p, 'distance': d} building_index_to_drop = np.ones(t.size, dtype=bool) extract_vars = list(set(self.data_vars() + self.ancillary_vars())) for i, dvar in enumerate(extract_vars): vdata = np.ma.fix_invalid( np.ma.MaskedArray(dvar[:].round(3).flatten())) building_index_to_drop = (building_index_to_drop == True) & ( vdata.mask == True) # noqa df_data[dvar.name] = vdata df = pd.DataFrame(df_data) # Drop all data columns with no data if clean_cols: df = df.dropna(axis=1, how='all') # Drop all data rows with no data variable data if clean_rows: df = df.iloc[~building_index_to_drop] return df
def to_dataframe(self, clean_cols=True, clean_rows=True): # The index variable (trajectory_index) is identified by having an # attribute with name of instance_dimension whose value is the instance # dimension name (trajectory in this example). The index variable must # have the profile dimension as its sole dimension, and must be type # integer. Each value in the index variable is the zero-based trajectory # index that the profile belongs to i.e. profile p belongs to trajectory # i=trajectory_index(p), as in section H.2.5. r_index_var = self.get_variables_by_attributes( instance_dimension=lambda x: x is not None)[0] p_dim = self.dimensions[r_index_var.dimensions[0]] # Profile dimension r_dim = self.dimensions[ r_index_var.instance_dimension] # Trajectory dimension # The count variable (row_size) contains the number of elements for # each profile, which must be written contiguously. The count variable # is identified by having an attribute with name sample_dimension whose # value is the sample dimension (obs in this example) being counted. It # must have the profile dimension as its sole dimension, and must be # type integer o_index_var = self.get_variables_by_attributes( sample_dimension=lambda x: x is not None)[0] o_dim = self.dimensions[ o_index_var.sample_dimension] # Sample dimension try: rvar = self.get_variables_by_attributes(cf_role='trajectory_id')[0] traj_indexes = normalize_array(rvar) assert traj_indexes.size == r_dim.size except BaseException: logger.warning( 'Could not pull trajectory values a variable with "cf_role=trajectory_id", using a computed range.' ) traj_indexes = np.arange(r_dim.size) try: pvar = self.get_variables_by_attributes(cf_role='profile_id')[0] profile_indexes = normalize_array(pvar) assert profile_indexes.size == p_dim.size except BaseException: logger.warning( 'Could not pull profile values from a variable with "cf_role=profile_id", using a computed range.' ) profile_indexes = np.arange(p_dim.size) # Profile dimension tvars = self.t_axes() if len(tvars) > 1: tvar = [ v for v in self.t_axes() if v.dimensions == ( p_dim.name, ) and getattr(v, 'axis', '').lower() == 't' ][0] else: tvar = tvars[0] xvars = self.x_axes() if len(xvars) > 1: xvar = [ v for v in self.x_axes() if v.dimensions == ( p_dim.name, ) and getattr(v, 'axis', '').lower() == 'x' ][0] else: xvar = xvars[0] yvars = self.y_axes() if len(yvars) > 1: yvar = [ v for v in self.y_axes() if v.dimensions == ( p_dim.name, ) and getattr(v, 'axis', '').lower() == 'y' ][0] else: yvar = yvars[0] zvars = self.z_axes() if len(zvars) > 1: zvar = [ v for v in self.z_axes() if v.dimensions == ( o_dim.name, ) and getattr(v, 'axis', '').lower() == 'z' ][0] else: zvar = zvars[0] p = np.ma.masked_all(o_dim.size, dtype=profile_indexes.dtype) r = np.ma.masked_all(o_dim.size, dtype=traj_indexes.dtype) t = np.ma.masked_all(o_dim.size, dtype=tvar.dtype) x = np.ma.masked_all(o_dim.size, dtype=xvar.dtype) y = np.ma.masked_all(o_dim.size, dtype=yvar.dtype) si = 0 for i in np.arange(profile_indexes.size): ei = si + o_index_var[i] p[si:ei] = profile_indexes[i] r[si:ei] = traj_indexes[r_index_var[i]] t[si:ei] = tvar[i] x[si:ei] = xvar[i] y[si:ei] = yvar[i] si = ei t_mask = False tfill = get_fill_value(tvar) if tfill is not None: t_mask = np.copy(np.ma.getmaskarray(t)) t[t_mask] = 1 t = np.ma.MaskedArray( nc4.num2date(t, tvar.units, getattr(tvar, 'calendar', 'standard'))) # Patch the time variable back to its original mask, since num2date # breaks any missing/fill values t[t_mask] = np.ma.masked # X and Y x = generic_masked(x, minv=-180, maxv=180).round(5) y = generic_masked(y, minv=-90, maxv=90).round(5) # Distance d = np.ma.zeros(o_dim.size, dtype=np.float64) d[1:] = great_distance(start_latitude=y[0:-1], end_latitude=y[1:], start_longitude=x[0:-1], end_longitude=x[1:])['distance'] d = generic_masked(np.cumsum(d), minv=0).round(2) # Sample dimension z = generic_masked(zvar[:].flatten(), attrs=self.vatts(zvar.name)).round(5) df_data = { 't': t, 'x': x, 'y': y, 'z': z, 'trajectory': r, 'profile': p, 'distance': d } building_index_to_drop = np.ones(o_dim.size, dtype=bool) extract_vars = list(set(self.data_vars() + self.ancillary_vars())) for i, dvar in enumerate(extract_vars): # Profile dimensions if dvar.dimensions == (p_dim.name, ): vdata = np.ma.masked_all(o_dim.size, dtype=dvar.dtype) si = 0 for j in np.arange(profile_indexes.size): ei = si + o_index_var[j] vdata[si:ei] = dvar[j] si = ei # Sample dimensions elif dvar.dimensions == (o_dim.name, ): vdata = generic_masked(dvar[:].flatten(), attrs=self.vatts(dvar.name)).round(3) else: logger.warning( "Skipping variable {}... it didn't seem like a data variable" .format(dvar)) building_index_to_drop = (building_index_to_drop == True) & ( vdata.mask == True) # noqa df_data[dvar.name] = vdata df = pd.DataFrame(df_data) # Drop all data columns with no data if clean_cols: df = df.dropna(axis=1, how='all') # Drop all data rows with no data variable data if clean_rows: df = df.iloc[~building_index_to_drop] return df