def ratio(cd, models, suppress=False): """For a compressed data set and a set of models, calculate the ratio of data elements that make up the data set. """ mc = [0] * len(models) if suppress: suppress.suppress(2) for d in cd: bm = optimalModel(d, models)[0] if not (bm == -1): mc[bm] += 1 if suppress: suppress.restore(2) r = [(t * 1.0) / len(cd) for t in mc] return r, mc
def ratio(cd, models, suppress = False): """For a compressed data set and a set of models, calculate the ratio of data elements that make up the data set. """ mc = [0] * len(models) if suppress: suppress.suppress(2) for d in cd: bm = optimalModel(d, models)[0] if not (bm == -1): mc[bm] += 1 if suppress: suppress.restore(2) r = [(t * 1.0)/len(cd) for t in mc] return r, mc
"""cluster_score.py Author: James Howard Short program to give the score of a given clustering """ import pybb.math.markov_anneal as markov_anneal import pybb.data.dataio as dataio import pybb.math.hmmextra as hmmextra import os import pybb.suppress as suppress suppress.suppress(2) from ghmm import * suppress.restore(2) readLocation = "../../runs/clean/models/" if __name__ == "__main__": files = os.listdir(readLocation) suppress.suppress(2) for f in files: print f #It is a data file. if f.split('.')[-1] == 'dat': #Open files fn = dataio.loadData(readLocation + str(f)) fn.matrixToModel(fn.modelList)
"""cluster_score.py Author: James Howard Short program to give the score of a given clustering """ import pybb.math.markov_anneal as markov_anneal import pybb.data.dataio as dataio import pybb.math.hmmextra as hmmextra import os import pybb.suppress as suppress suppress.suppress(2) from ghmm import * suppress.restore(2) readLocation = "../../runs/clean/models/" if __name__ == "__main__": files = os.listdir(readLocation) suppress.suppress(2) for f in files: print f #It is a data file. if f.split('.')[-1] == 'dat': #Open files fn = dataio.loadData(readLocation + str(f)) fn.matrixToModel(fn.modelList) sigma = IntegerRange(0, fn.obs)