Example #1
0
def run_test(args):
    from pybert.io.task_data import TaskData
    from pybert.test.predictor import Predictor
    data = TaskData()
    targets, sentences = data.read_data(raw_data_path=config['test_path'],
                                        preprocessor=EnglishPreProcessor(),
                                        is_train=False)
    lines = list(zip(sentences, targets))
    processor = BertProcessor(vocab_path=config['bert_vocab_path'], do_lower_case=args.do_lower_case)
    label_list = processor.get_labels()
    id2label = {i: label for i, label in enumerate(label_list)}

    test_data = processor.get_test(lines=lines)
    test_examples = processor.create_examples(lines=test_data,
                                              example_type='test',
                                              cached_examples_file=config[
                                                                       'data_dir'] / f"cached_test_examples_{args.arch}")
    test_features = processor.create_features(examples=test_examples,
                                              max_seq_len=args.eval_max_seq_len,
                                              cached_features_file=config[
                                                                       'data_dir'] / "cached_test_features_{}_{}".format(
                                                  args.eval_max_seq_len, args.arch
                                              ))
    test_dataset = processor.create_dataset(test_features)
    test_sampler = SequentialSampler(test_dataset)
    test_dataloader = DataLoader(test_dataset, sampler=test_sampler, batch_size=args.train_batch_size)
    model = BertForMultiLable.from_pretrained(config['checkpoint_dir'], num_labels=len(label_list))

    # ----------- predicting
    logger.info('model predicting....')
    predictor = Predictor(model=model,
                          logger=logger,
                          n_gpu=args.n_gpu)
    result = predictor.predict(data=test_dataloader)
    print(result)
def run_test(args):
    from pybert.io.task_data import TaskData
    from pybert.test.predictor import Predictor
    data = TaskData()
    ids, targets, sentences = data.read_data(
        raw_data_path=config['test_path'],
        preprocessor=ChinesePreProcessor(),
        is_train=False)
    lines = list(zip(sentences, targets))
    #print(ids,sentences)
    processor = BertProcessor(vocab_path=config['bert_vocab_path'],
                              do_lower_case=args.do_lower_case)
    label_list = processor.get_labels()
    id2label = {i: label for i, label in enumerate(label_list)}

    test_data = processor.get_test(lines=lines)
    test_examples = processor.create_examples(
        lines=test_data,
        example_type='test',
        cached_examples_file=config['data_dir'] /
        f"cached_test_examples_{args.arch}")
    test_features = processor.create_features(
        examples=test_examples,
        max_seq_len=args.eval_max_seq_len,
        cached_features_file=config['data_dir'] /
        "cached_test_features_{}_{}".format(args.eval_max_seq_len, args.arch))
    test_dataset = processor.create_dataset(test_features)
    test_sampler = SequentialSampler(test_dataset)
    test_dataloader = DataLoader(test_dataset,
                                 sampler=test_sampler,
                                 batch_size=args.train_batch_size,
                                 collate_fn=collate_fn)
    model = BertForMultiLable.from_pretrained(config['checkpoint_dir'],
                                              num_labels=len(label_list))

    # ----------- predicting
    logger.info('model predicting....')
    predictor = Predictor(model=model, logger=logger, n_gpu=args.n_gpu)
    result = predictor.predict(data=test_dataloader)
    ids = np.array(ids)
    df1 = pd.DataFrame(ids, index=None)
    df2 = pd.DataFrame(result, index=None)
    all_df = pd.concat([df1, df2], axis=1)

    all_df.columns = ['id', 'sg', 'pj']
    all_df['sg'] = all_df['sg'].apply(lambda x: 1 if x > 0.5 else 0)
    all_df['pj'] = all_df['pj'].apply(lambda x: 1 if x > 0.5 else 0)
    #all_df['qs'] = all_df['qs'].apply(lambda x: 1 if x>0.5 else 0)
    #all_df['tz'] = all_df['tz'].apply(lambda x: 1 if x>0.5 else 0)
    #all_df['ggjc'] = all_df['ggjc'].apply(lambda x: 1 if x>0.5 else 0)

    #all_df.columns = ['id','zy','gfgqzr','qs','tz','ggjc']
    #all_df['zy'] = all_df['zy'].apply(lambda x: 1 if x>0.5 else 0)
    #all_df['gfgqzr'] = all_df['gfgqzr'].apply(lambda x: 1 if x>0.5 else 0)
    #all_df['qs'] = all_df['qs'].apply(lambda x: 1 if x>0.5 else 0)
    #all_df['tz'] = all_df['tz'].apply(lambda x: 1 if x>0.5 else 0)
    #all_df['ggjc'] = all_df['ggjc'].apply(lambda x: 1 if x>0.5 else 0)
    all_df.to_csv(
        "/home/LAB/liqian/test/game/Fin/CCKS-Cls/test_output/cls_out.csv",
        index=False)
Example #3
0
def build_examples(file_path, max_seq_len, masked_lm_prob, max_predictions_per_seq, vocab_list):
    f = open(file_path, 'r')
    lines = f.readlines()
    examples = []
    max_num_tokens = max_seq_len - 2
    for line_cnt, line in enumerate(lines):
        if line_cnt % 50000 == 0:
            logger.info(f"Loading line {line_cnt}")
        example = {}
        guid = f'corpus-{line_cnt}'
        tokens_a = line.strip("\n").split(" ")[:max_num_tokens]
        tokens = ["[CLS]"] + tokens_a + ["[SEP]"]
        segment_ids = [0 for _ in range(len(tokens_a) + 2)]
        # remove too short sample
        if len(tokens_a) < 5:
            continue
        tokens, masked_lm_positions, masked_lm_labels = create_masked_lm_predictions(
            tokens, masked_lm_prob, max_predictions_per_seq, vocab_list)
        if line_cnt < 2:
            print("-------------------------Example-----------------------")
            print("guid: %s" % (guid))
            print("tokens: %s" % " ".join([str(x) for x in tokens]))
            print("masked_lm_labels: %s" % " ".join([str(x) for x in masked_lm_labels]))
            print("segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
            print("masked_lm_positions: %s" % " ".join([str(x) for x in masked_lm_positions]))
        example['guid'] = guid
        example['tokens'] = tokens
        example['segment_ids'] = segment_ids
        example['masked_lm_positions'] = masked_lm_positions
        example['masked_lm_labels'] = masked_lm_labels
        examples.append(example)
    f.close()
    return examples
def main():
    parser = ArgumentParser()
    parser.add_argument("--arch", default='bert', type=str)
    parser.add_argument("--do_data", action='store_true')
    parser.add_argument("--do_train", action='store_true')
    parser.add_argument("--do_test", action='store_true')
    parser.add_argument("--save_best", action='store_true') 
    parser.add_argument("--do_lower_case", action='store_true')
    parser.add_argument('--data_name', default='train', type=str)
    parser.add_argument("--epochs", default=4, type=int)
    parser.add_argument("--resume_path", default='', type=str)
    parser.add_argument("--mode", default='max', type=str)
    parser.add_argument("--monitor", default='valid_f1', type=str)
    parser.add_argument("--valid_size", default=0.2, type=float)
    parser.add_argument("--local_rank", type=int, default=-1)
    parser.add_argument("--sorted", default=1, type=int, help='1 : True  0:False ')
    parser.add_argument("--n_gpu", type=str, default='0', help='"0,1,.." or "0" or "" ')
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1)
    parser.add_argument("--train_batch_size", default=8, type=int)
    parser.add_argument('--eval_batch_size', default=8, type=int)
    parser.add_argument("--train_max_seq_len", default=256, type=int)
    parser.add_argument("--eval_max_seq_len", default=256, type=int)
    parser.add_argument('--loss_scale', type=float, default=0)
    parser.add_argument("--warmup_proportion", default=0.1, type=int, )
    parser.add_argument("--weight_decay", default=0.01, type=float)
    parser.add_argument("--adam_epsilon", default=1e-8, type=float)
    parser.add_argument("--grad_clip", default=1.0, type=float)
    parser.add_argument("--learning_rate", default=2e-5, type=float)
    parser.add_argument('--seed', type=int, default=42)
    parser.add_argument('--fp16', action='store_true')
    parser.add_argument('--fp16_opt_level', type=str, default='O1')

    args = parser.parse_args()
    config['checkpoint_dir'] = config['checkpoint_dir'] / args.arch
    config['checkpoint_dir'].mkdir(exist_ok=True)
    # Good practice: save your training arguments together with the trained model
    torch.save(args, config['checkpoint_dir'] / 'training_args.bin')
    seed_everything(args.seed)
    init_logger(log_file=config['log_dir'] / f"{args.arch}.log")

    logger.info("Training/evaluation parameters %s", args)

    if args.do_data:
        from pybert.io.task_data import TaskData
        processor = BertProcessor(vocab_path=config['bert_vocab_path'], do_lower_case=args.do_lower_case)
        label_list = processor.get_labels()
        label2id = {label: i for i, label in enumerate(label_list)}
        data = TaskData()
        targets, sentences = data.read_data(raw_data_path=config['raw_data_path'],
                                            preprocessor=None, is_train=True,label2id=label2id)
        data.train_val_split(X=sentences, y=targets, shuffle=True, stratify=targets,
                             valid_size=args.valid_size, data_dir=config['data_dir'],
                             data_name=args.data_name)
    if args.do_train:
        run_train(args)

    if args.do_test:
        run_test(args)
def run_test(args):
    from pybert.io.task_data import TaskData
    from pybert.test.predictor import Predictor
    import pickle
    import os 
    
    processor = BertProcessor(vocab_path=config['bert_vocab_path'], do_lower_case=args.do_lower_case)

    label_list = processor.get_labels()
    label2id = {label: i for i, label in enumerate(label_list)}
    id2label = {i: label for i, label in enumerate(label_list)}

    test_data = processor.get_train(config['data_dir'] / f"{args.data_name}.test.pkl")
    print ("Test data is:")
    print (test_data)

    print ("Label list is:")
    print (label_list)
    print ("----------------------------------------")
    # test_data = processor.get_test(lines=lines)

    test_examples = processor.create_examples(lines=test_data,
                                              example_type='test',
                                              cached_examples_file=config[
                                                                       'data_cache'] / f"cached_test_examples_{args.arch}")
    test_features = processor.create_features(examples=test_examples,
                                              max_seq_len=args.eval_max_seq_len,
                                              cached_features_file=config[
                                                                       'data_cache'] / "cached_test_features_{}_{}".format(
                                                  args.eval_max_seq_len, args.arch
                                              ))
    test_dataset = processor.create_dataset(test_features)
    test_sampler = SequentialSampler(test_dataset)

    test_dataloader = DataLoader(test_dataset, sampler=test_sampler, batch_size=args.train_batch_size)
    
    model = BertForMultiLable.from_pretrained(config['checkpoint_dir'], num_labels=len(label_list))

    # ----------- predicting
    logger.info('model predicting....')
    predictor = Predictor(model=model,
                          logger=logger,
                          n_gpu=args.n_gpu,
                          batch_metrics=[AccuracyThresh(thresh=0.5)],
                          epoch_metrics=[AUC(average='micro', task_type='binary'),
                                     MultiLabelReport(id2label=id2label)])

    result, test_predicted, test_true = predictor.predict(data=test_dataloader)

    pickle.dump(test_true, open(os.path.join(config["test/checkpoint_dir"], "test_true.p"), "wb"))

    pickle.dump(test_predicted, open(os.path.join(config["test/checkpoint_dir"], "test_predicted.p"), "wb"))
    
    pickle.dump(id2label, open(os.path.join(config["test/checkpoint_dir"], "id2label.p"), "wb"))
    
    print ("Predictor results:")
    print(result)
    print ("-----------------------------------------------")
Example #6
0
def run_test(args):
    from pybert.io.task_data import TaskData
    from pybert.test.predictor import Predictor
    data = TaskData()
    # targets, sentences = data.read_data(raw_data_path=config['test_path'],
    #                                     preprocessor=EnglishPreProcessor(),
    #                                     is_train=False)
    _, _, targets, sentences = data.read_data(config, raw_data_path=config['test_path'],
                                        is_train=False)
    lines = list(zip(sentences, targets))
    # processor = BertProcessor(vocab_path=config['bert_vocab_path'], do_lower_case=args.do_lower_case)
    processor = BertProcessor()
    label_list = processor.get_labels()
    id2label = {i: label for i, label in enumerate(label_list)}

    test_data = processor.get_test(lines=lines)
    test_examples = processor.create_examples(lines=test_data,
                                              example_type='test',
                                              cached_examples_file=config[
                                            'data_dir'] / f"cached_test_examples_{args.arch}")
    test_features = processor.create_features(examples=test_examples,
                                              max_seq_len=args.eval_max_seq_len,
                                              cached_features_file=config[
                                            'data_dir'] / "cached_test_features_{}_{}".format(
                                                args.eval_max_seq_len, args.arch
                                              ))
    test_dataset = processor.create_dataset(test_features)
    test_sampler = SequentialSampler(test_dataset)
    test_dataloader = DataLoader(test_dataset, sampler=test_sampler, batch_size=args.train_batch_size,
                                 collate_fn=collate_fn)
    model = BertForMultiLable.from_pretrained(config['checkpoint_dir'], num_labels=len(label_list))

    # ----------- predicting
    logger.info('model predicting....')
    predictor = Predictor(model=model,
                          logger=logger,
                          n_gpu=args.n_gpu)
    result = predictor.predict(data=test_dataloader)
    result[result<0.5] = 0
    result[result>=0.5] = 1
    labels = []
    for i in range(result.shape[0]):
        ids = np.where(result[i]==1)[0]
        each_patent_label = [id2label[id] for id in ids]
        labels.append(each_patent_label)
    if os.path.exists(config['predictions']):
        os.remove(config['predictions'])
    with open(config['test_path'], 'r') as f:
        reader = csv.reader(f)
        for j, line in enumerate(reader):
            id = line[0]
            with open(config['predictions'], 'a+') as g:
                g.write("{}\t".format(id))
                for label in labels[j]:
                    g.write("{}\t".format(label))
                g.write("\n")
Example #7
0
def run_test(args):
    from pybert.test.predictor import Predictor

    processor = BertProcessor(vocab_path=config['bert_vocab_path'],
                              do_lower_case=args.do_lower_case)

    test_data = processor.get_test(config['test_path'])
    test_examples = processor.create_examples(
        lines=test_data,
        example_type='test',
        cached_examples_file=config['data_dir'] /
        f"cached_test_examples_{args.arch}")
    test_features = processor.create_features(
        examples=test_examples,
        max_seq_len=args.eval_max_seq_len,
        cached_features_file=config['data_dir'] /
        "cached_test_features_{}_{}".format(args.eval_max_seq_len, args.arch))
    test_dataset = processor.create_dataset(test_features)
    test_sampler = SequentialSampler(test_dataset)
    test_dataloader = DataLoader(test_dataset,
                                 sampler=test_sampler,
                                 batch_size=args.eval_batch_size)

    idx2word = {}
    for (w, i) in processor.tokenizer.vocab.items():
        idx2word[i] = w

    label_list = processor.get_labels(label_path=config['data_label_path'])

    idx2label = {i: label for i, label in enumerate(label_list)}
    if args.test_path:
        args.test_path = Path(args.test_path)
        model = BertForMultiLable.from_pretrained(args.test_path,
                                                  num_labels=len(label_list))
    else:
        model = BertForMultiLable.from_pretrained(config['bert_model_dir'],
                                                  num_labels=len(label_list))
    for p in model.bert.parameters():
        p.require_grad = False

    # ----------- predicting -----------
    writer = SummaryWriter()

    logger.info('model predicting....')
    predictor = Predictor(model=model,
                          logger=logger,
                          n_gpu=args.n_gpu,
                          i2w=idx2word,
                          i2l=idx2label)
    result = predictor.predict(data=test_dataloader)
    if args.predict_labels:
        predictor.labels(result, args.predict_idx)
Example #8
0
 def __init__(self, training_path, file_id, tokenizer,reduce_memory=False):
     self.tokenizer = tokenizer
     self.file_id = file_id
     data_file = training_path / f"file_{self.file_id}.json"
     metrics_file = training_path / f"file_{self.file_id}_metrics.json"
     assert data_file.is_file() and metrics_file.is_file()
     metrics = json.loads(metrics_file.read_text())
     num_samples = metrics['num_training_examples']
     seq_len = metrics['max_seq_len']
     self.temp_dir = None
     self.working_dir = None
     if reduce_memory:
         self.temp_dir = TemporaryDirectory()
         self.working_dir = Path(self.temp_dir.name)
         input_ids = np.memmap(filename=self.working_dir / 'input_ids.memmap',
                               mode='w+', dtype=np.int32, shape=(num_samples, seq_len))
         input_masks = np.memmap(filename=self.working_dir / 'input_masks.memmap',
                                 shape=(num_samples, seq_len), mode='w+', dtype=np.bool)
         segment_ids = np.memmap(filename=self.working_dir / 'segment_ids.memmap',
                                 shape=(num_samples, seq_len), mode='w+', dtype=np.bool)
         lm_label_ids = np.memmap(filename=self.working_dir / 'lm_label_ids.memmap',
                                  shape=(num_samples, seq_len), mode='w+', dtype=np.int32)
         lm_label_ids[:] = -1
     else:
         input_ids = np.zeros(shape=(num_samples, seq_len), dtype=np.int32)
         input_masks = np.zeros(shape=(num_samples, seq_len), dtype=np.bool)
         segment_ids = np.zeros(shape=(num_samples, seq_len), dtype=np.bool)
         lm_label_ids = np.full(shape=(num_samples, seq_len), dtype=np.int32, fill_value=-1)
     logger.info(f"Loading training examples for {str(data_file)}")
     with data_file.open() as f:
         for i, line in enumerate(f):
             line = line.strip()
             example = json.loads(line)
             features = convert_example_to_features(example, tokenizer, seq_len)
             input_ids[i] = features.input_ids
             segment_ids[i] = features.segment_ids
             input_masks[i] = features.input_mask
             lm_label_ids[i] = features.lm_label_ids
     assert i == num_samples - 1  # Assert that the sample count metric was true
     logger.info("Loading complete!")
     self.num_samples = num_samples
     self.seq_len = seq_len
     self.input_ids = input_ids
     self.input_masks = input_masks
     self.segment_ids = segment_ids
     self.lm_label_ids = lm_label_ids
def run_test(args):
    from pybert.io.task_data import TaskData
    from pybert.test.predictor import Predictor
    data = TaskData()
    ids,targets, sentences = data.read_data(raw_data_path=config['test_path'],
                                        preprocessor=None,
                                        is_train=False)
    lines = list(zip(sentences, targets))
    processor = BertProcessor(vocab_path=config['bert_vocab_path'], do_lower_case=args.do_lower_case)
    label_list = processor.get_labels()
    id2label = {i: label for i, label in enumerate(label_list)}

    test_data = processor.get_test(lines=lines)
    test_examples = processor.create_examples(lines=test_data,
                                              example_type='test',
                                              cached_examples_file=config[
                                                                       'data_dir'] / f"cached_test_examples_{args.arch}")
    test_features = processor.create_features(examples=test_examples,
                                              max_seq_len=args.eval_max_seq_len,
                                              cached_features_file=config[
                                                                       'data_dir'] / "cached_test_features_{}_{}".format(
                                                  args.eval_max_seq_len, args.arch
                                              ))
    test_dataset = processor.create_dataset(test_features)
    test_sampler = SequentialSampler(test_dataset)
    test_dataloader = DataLoader(test_dataset, sampler=test_sampler, batch_size=args.train_batch_size)
    model = BertForMultiClass.from_pretrained(config['checkpoint_dir'], num_labels=len(label_list))

    # ----------- predicting
    logger.info('model predicting....')
    predictor = Predictor(model=model, logger=logger, n_gpu=args.n_gpu)
    result = predictor.predict(data=test_dataloader)
    import numpy as np
    result=np.argmax(result,axis=1)
    with open('submit1.csv','w',encoding='utf-8') as f:
        for id,pre in zip(ids,result):
            f.write(id+','+str(pre)+'\n')
    print(result)
def main():
    parser = ArgumentParser()
    parser.add_argument("--arch", default='bert', type=str)
    parser.add_argument("--do_data", action='store_true')
    parser.add_argument("--do_train", action='store_true')
    parser.add_argument("--do_test", action='store_true')
    parser.add_argument("--save_best", action='store_true')
    parser.add_argument("--do_lower_case", action='store_true')
    parser.add_argument('--data_name', default='kaggle', type=str)
    parser.add_argument("--mode", default='min', type=str)
    parser.add_argument("--monitor", default='valid_loss', type=str)

    parser.add_argument("--epochs", default=20, type=int)
    parser.add_argument("--resume_path", default='', type=str)
    parser.add_argument("--predict_checkpoints", type=int, default=0)
    parser.add_argument("--valid_size", default=0.2, type=float)
    parser.add_argument("--local_rank", type=int, default=-1)
    parser.add_argument("--sorted",
                        default=1,
                        type=int,
                        help='1 : True  0:False ')
    parser.add_argument("--n_gpu",
                        type=str,
                        default='0',
                        help='"0,1,.." or "0" or "" ')
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1)
    parser.add_argument("--train_batch_size", default=8, type=int)
    parser.add_argument('--eval_batch_size', default=8, type=int)
    parser.add_argument("--train_max_seq_len", default=256, type=int)
    parser.add_argument("--eval_max_seq_len", default=256, type=int)
    parser.add_argument('--loss_scale', type=float, default=0)
    parser.add_argument("--warmup_proportion", default=0.1, type=float)
    parser.add_argument("--weight_decay", default=0.01, type=float)
    parser.add_argument("--adam_epsilon", default=1e-8, type=float)
    parser.add_argument("--grad_clip", default=1.0, type=float)
    parser.add_argument("--learning_rate", default=2e-5, type=float)
    parser.add_argument('--seed', type=int, default=42)
    parser.add_argument('--fp16', action='store_true')
    parser.add_argument('--fp16_opt_level', type=str, default='O1')
    args = parser.parse_args()

    init_logger(
        log_file=config['log_dir'] /
        f'{args.arch}-{time.strftime("%Y-%m-%d-%H:%M:%S", time.localtime())}.log'
    )
    config['checkpoint_dir'] = config['checkpoint_dir'] / args.arch
    config['checkpoint_dir'].mkdir(exist_ok=True)
    # Good practice: save your training arguments together with the trained model
    torch.save(args, config['checkpoint_dir'] / 'training_args.bin')
    seed_everything(args.seed)
    logger.info("Training/evaluation parameters %s", args)
    args.save_best = False
    args.do_train = True
    args.resume_path = 'pybert/output/checkpoints/bert/checkpoint-epoch-3'
    args.do_lower_case = True
    if args.do_data:
        from pybert.io.task_data import TaskData
        data = TaskData()
        targets, sentences = data.read_data(
            raw_data_path=config['raw_data_path'],
            preprocessor=EnglishPreProcessor(),
            is_train=True)
        data.train_val_split(X=sentences,
                             y=targets,
                             shuffle=True,
                             stratify=False,
                             valid_size=args.valid_size,
                             data_dir=config['data_dir'],
                             data_name=args.data_name)
    if args.do_train:
        run_train(args)

    if args.do_test:
        run_test(args)
Example #11
0
def run_test(args, test=False, k=7, med_map='pybert/dataset/med_map.csv'):
    from pybert.io.task_data import TaskData
    from pybert.test.predictor import Predictor
    data = TaskData()
    targets, sentences = data.read_data(raw_data_path=config['test_path'],
                                        preprocessor=EnglishPreProcessor(),
                                        is_train=test)
    print(
        f'-----------------------------------------\ntargets {targets}\n---------------------------------------------------'
    )
    lines = list(zip(sentences, targets))
    processor = BertProcessor(vocab_path=config['bert_vocab_path'],
                              do_lower_case=args.do_lower_case)
    label_list = processor.get_labels()
    id2label = {i: label for i, label in enumerate(label_list)}

    test_data = processor.get_test(lines=lines)
    test_examples = processor.create_examples(
        lines=test_data,
        example_type='test',
        cached_examples_file=config['data_dir'] /
        f"cached_test_examples_{args.arch}")
    test_features = processor.create_features(
        examples=test_examples,
        max_seq_len=args.eval_max_seq_len,
        cached_features_file=config['data_dir'] /
        "cached_test_features_{}_{}".format(args.eval_max_seq_len, args.arch))
    test_dataset = processor.create_dataset(test_features)
    test_sampler = SequentialSampler(test_dataset)
    test_dataloader = DataLoader(test_dataset,
                                 sampler=test_sampler,
                                 batch_size=args.train_batch_size)
    model = BertForMultiLable.from_pretrained(config['checkpoint_dir'])

    # ----------- predicting
    logger.info('model predicting....')
    predictor = Predictor(model=model,
                          logger=logger,
                          n_gpu=args.n_gpu,
                          test=test)
    if test:
        results, targets = predictor.predict(data=test_dataloader)
        #print(f'results {results.shape}')
        #print(f'targets {targets.shape}')
        result = dict()
        metrics = [Recall(), Acc()]
        for metric in metrics:
            metric.reset()
            metric(logits=results, target=targets)
            value = metric.value()
            if value is not None:
                result[f'valid_{metric.name()}'] = value
        return result
    else:
        results = predictor.predict(data=test_dataloader)
        pred = np.argsort(results)[:, -k:][:, ::-1]
        with open('pybert/dataset/med_map.csv', mode='r') as infile:
            reader = csv.reader(infile)
            med_dict = {int(rows[0]): rows[1] for rows in reader}
            pred = np.vectorize(med_dict.get)(pred)
            return pred
Example #12
0
def main():
    parser = ArgumentParser()
    parser.add_argument("--arch", default='bert', type=str)
    parser.add_argument("--do_data", action='store_true')
    parser.add_argument("--train", action='store_true')
    parser.add_argument("--test", action='store_true')
    parser.add_argument("--save_best", action='store_true')
    parser.add_argument("--do_lower_case", action='store_true')
    parser.add_argument('--data_name', default='job_dataset', type=str)
    parser.add_argument("--epochs", default=10, type=int)
    parser.add_argument("--resume_path", default='', type=str)
    parser.add_argument("--test_path", default='', type=str)
    parser.add_argument("--mode", default='min', type=str)
    parser.add_argument("--monitor", default='valid_loss', type=str)
    parser.add_argument("--valid_size", default=0.05, type=float)
    parser.add_argument("--local_rank", type=int, default=-1)
    parser.add_argument("--sorted",
                        default=1,
                        type=int,
                        help='1 : True  0:False ')
    parser.add_argument("--n_gpu",
                        type=str,
                        default='0',
                        help='"0,1,.." or "0" or "" ')
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1)
    parser.add_argument("--train_batch_size", default=4, type=int)
    parser.add_argument('--eval_batch_size', default=4, type=int)
    parser.add_argument("--train_max_seq_len", default=256, type=int)
    parser.add_argument("--eval_max_seq_len", default=256, type=int)
    parser.add_argument('--loss_scale', type=float, default=0)
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=int,
    )
    parser.add_argument("--weight_decay", default=0.01, type=float)
    parser.add_argument("--adam_epsilon", default=1e-8, type=float)
    parser.add_argument("--grad_clip", default=1.0, type=float)
    parser.add_argument("--learning_rate", default=1.0e-4, type=float)
    parser.add_argument('--seed', type=int, default=42)
    parser.add_argument('--fp16', action='store_true')
    parser.add_argument('--fp16_opt_level', type=str, default='O1')
    parser.add_argument('--predict_labels', type=bool, default=False)
    parser.add_argument('--predict_idx',
                        type=str,
                        default="0",
                        help=' "idx" or "start-end" or "all" ')

    args = parser.parse_args()
    config['checkpoint_dir'] = config['checkpoint_dir'] / args.arch
    config['checkpoint_dir'].mkdir(exist_ok=True)
    torch.save(args, config['checkpoint_dir'] / 'training_args.bin')
    seed_everything(args.seed)
    init_logger(log_file=config['log_dir'] / f"{args.arch}.log")

    logger.info("Training/evaluation parameters %s", args)

    if args.do_data:
        from pybert.io.task_data import TaskData
        data = TaskData()
        targets, sentences = data.read_data(
            raw_data_path=config['raw_data_path'],
            preprocessor=EnglishPreProcessor(),
            is_train=True)
        data.train_val_split(X=sentences,
                             y=targets,
                             shuffle=False,
                             stratify=False,
                             valid_size=args.valid_size,
                             data_dir=config['data_dir'],
                             data_name=args.data_name)
    if args.train:
        run_train(args)

    if args.test:
        run_test(args)
Example #13
0
def main():
    parser = ArgumentParser()
    parser.add_argument("--do_data", default=False, action='store_true')
    parser.add_argument("--do_corpus", default=False, action='store_true')
    parser.add_argument("--do_vocab", default=False, action='store_true')
    parser.add_argument("--do_split", default=False, action='store_true')
    parser.add_argument('--seed',default=42,type=int)
    parser.add_argument("--line_per_file", default=1000000000, type=int)
    parser.add_argument("--file_num", type=int, default=10,
                        help="Number of dynamic masking to pregenerate")
    parser.add_argument("--max_seq_len", type=int, default=128)
    parser.add_argument("--short_seq_prob", type=float, default=0.1,
                        help="Probability of making a short sentence as a training example")
    parser.add_argument("--masked_lm_prob", type=float, default=0.15,
                        help="Probability of masking each token for the LM task")
    parser.add_argument("--max_predictions_per_seq", type=int, default=20,
                        help="Maximum number of tokens to mask in each sequence")
    args = parser.parse_args()
    seed_everything(args.seed)

    if args.do_corpus:
        corpus = []
        train_path = str(config['data_dir'] / 'train.txt')
        with open(train_path, 'r') as fr:
            for ex_id, line in enumerate(fr):
                line = line.strip("\n")
                lines = [" ".join(x.split("/")[0].split("_")) for x in line.split("  ")]
                if ex_id == 0:
                    logger.info(f"Train example: {' '.join(lines)}")
                corpus.append(" ".join(lines))
        test_path = str(config['data_dir'] / 'test.txt')
        with open(test_path, 'r') as fr:
            for ex_id, line in enumerate(fr):
                line = line.strip("\n")
                lines = line.split("_")
                if ex_id == 0:
                    logger.info(f"Test example: {' '.join(lines)}")
                corpus.append(" ".join(lines))
        corpus_path = str(config['data_dir'] / 'corpus.txt')
        with open(corpus_path, 'r') as fr:
            for ex_id, line in enumerate(fr):
                line = line.strip("\n")
                lines = line.split("_")
                if ex_id == 0:
                    logger.info(f"Corpus example: {' '.join(lines)}")
                corpus.append(" ".join(lines))
        corpus = list(set(corpus))
        logger.info(f"corpus size: {len(corpus)}")
        random_order = list(range(len(corpus)))
        np.random.shuffle(random_order)
        corpus = [corpus[i] for i in random_order]
        new_corpus_path = config['data_dir'] / "corpus/corpus.txt"
        if not new_corpus_path.exists():
            new_corpus_path.parent.mkdir(exist_ok = True)
        with open(new_corpus_path, 'w') as fr:
            for line in corpus:
                fr.write(line + "\n")

    if args.do_split:
        new_corpus_path = config['data_dir'] / "corpus/corpus.txt"
        split_save_path = config['data_dir'] / "corpus/train"
        if not split_save_path.exists():
            split_save_path.mkdir(exist_ok=True)
        line_per_file = args.line_per_file
        command = f'split -a 4 -l {line_per_file} -d {new_corpus_path} {split_save_path}/shard_'
        os.system(f"{command}")

    if args.do_vocab:
        vocab = Vocabulary(min_freq=0,add_unused=True)
        vocab.read_data(data_path=config['data_dir'] / "corpus/train")
        vocab.build_vocab()
        vocab.save(file_path=config['data_dir'] / 'corpus/vocab_mapping.pkl')
        vocab.save_bert_vocab(file_path=config['bert_vocab_path'])
        logger.info(f"vocab size: {len(vocab)}")
        bert_base_config['vocab_size'] = len(vocab)
        save_json(data=bert_base_config, file_path=config['bert_config_file'])

    if args.do_data:
        vocab_list = load_vocab(config['bert_vocab_path'])
        data_path = config['data_dir'] / "corpus/train"
        files = sorted([f for f in data_path.iterdir() if f.exists() and "." not in str(f)])
        print(files)
        logger.info("--- pregenerate training data parameters ---")
        logger.info(f'max_seq_len: {args.max_seq_len}')
        logger.info(f"max_predictions_per_seq: {args.max_predictions_per_seq}")
        logger.info(f"masked_lm_prob: {args.masked_lm_prob}")
        logger.info(f"seed: {args.seed}")
        logger.info(f"file num : {args.file_num}")
        for idx in range(args.file_num):
            logger.info(f"pregenetate file_{idx}.json")
            save_filename = data_path / f"file_{idx}.json"
            num_instances = 0
            with save_filename.open('w') as fw:
                for file_idx in range(len(files)):
                    file_path = files[file_idx]
                    file_examples = build_examples(file_path,max_seq_len=args.max_seq_len,
                                                  masked_lm_prob=args.masked_lm_prob,
                                                  max_predictions_per_seq=args.max_predictions_per_seq,
                                                  vocab_list = vocab_list)
                    file_examples = [json.dumps(instance) for instance in file_examples]
                    for instance in file_examples:
                        fw.write(instance + '\n')
                        num_instances += 1
            metrics_file = data_path / f"file_{idx}_metrics.json"
            print(f"num_instances: {num_instances}")
            with metrics_file.open('w') as metrics_file:
                metrics = {
                    "num_training_examples": num_instances,
                    "max_seq_len": args.max_seq_len
                }
                metrics_file.write(json.dumps(metrics))
Example #14
0
def main():

    parser = ArgumentParser()
    parser.add_argument("--file_num", type=int, default=10,
                        help="Number of pregenerate file")
    parser.add_argument("--reduce_memory", action="store_true",
                        help="Store training data as on-disc memmaps to massively reduce memory usage")
    parser.add_argument("--epochs", type=int, default=2,
                        help="Number of epochs to train for")
    parser.add_argument('--num_eval_steps', default=200)
    parser.add_argument('--num_save_steps', default=5000)
    parser.add_argument("--local_rank", type=int, default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument("--no_cuda", action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
    parser.add_argument("--train_batch_size", default=24, type=int,
                        help="Total batch size for training.")
    parser.add_argument('--fp16', action='store_true',
                        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument('--loss_scale', type=float, default=0,
                        help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
                             "0 (default value): dynamic loss scaling.\n"
                             "Positive power of 2: static loss scaling value.\n")
    parser.add_argument("--warmup_proportion",default=0.1,type=float,
                        help="Linear warmup over warmup_steps.")
    parser.add_argument("--adam_epsilon", default=1e-8, type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--learning_rate", default=1e-4, type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument('--seed', type=int, default=42,
                        help="random seed for initialization")
    parser.add_argument('--fp16_opt_level', type=str, default='O1',
                        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
                             "See details at https://nvidia.github.io/apex/amp.html")
    args = parser.parse_args()

    pregenerated_data = config['data_dir'] / "corpus/train"
    assert pregenerated_data.is_dir(), \
        "--pregenerated_data should point to the folder of files made by prepare_lm_data_mask.py!"

    samples_per_epoch = 0
    for i in range(args.file_num):
        data_file = pregenerated_data / f"file_{i}.json"
        metrics_file = pregenerated_data / f"file_{i}_metrics.json"
        if data_file.is_file() and metrics_file.is_file():
            metrics = json.loads(metrics_file.read_text())
            samples_per_epoch += metrics['num_training_examples']
        else:
            if i == 0:
                exit("No training data was found!")
            print(f"Warning! There are fewer epochs of pregenerated data ({i}) than training epochs ({args.epochs}).")
            print("This script will loop over the available data, but training diversity may be negatively impacted.")
            break
    logger.info(f"samples_per_epoch: {samples_per_epoch}")

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info( f"device: {device} n_gpu: {n_gpu}, distributed training: {bool(args.local_rank != -1)}, 16-bits training: {args.fp16}")

    if args.gradient_accumulation_steps < 1:
        raise ValueError(f"Invalid gradient_accumulation_steps parameter: {args.gradient_accumulation_steps}, should be >= 1")
    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    seed_everything(args.seed)
    tokenizer = CustomTokenizer(vocab_file=config['bert_vocab_path'])
    total_train_examples = samples_per_epoch * args.epochs

    num_train_optimization_steps = int(
        total_train_examples / args.train_batch_size / args.gradient_accumulation_steps)
    if args.local_rank != -1:
        num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()
    args.warmup_steps = int(num_train_optimization_steps * args.warmup_proportion)

    # Prepare model
    with open(str(config['bert_config_file']), "r", encoding='utf-8') as reader:
        json_config = json.loads(reader.read())
    print(json_config)
    bert_config = BertConfig.from_json_file(str(config['bert_config_file']))
    model = BertForMaskedLM(config=bert_config)
    # model = BertForMaskedLM.from_pretrained(config['checkpoint_dir'] / 'checkpoint-580000')
    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
        {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],'weight_decay': 0.01},
        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
    ]
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
    scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=num_train_optimization_steps)
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
    # if args.fp16:
    #     try:
    #         from apex.optimizers import FP16_Optimizer
    #         from apex.optimizers import FusedAdam
    #     except ImportError:
    #         raise ImportError(
    #             "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
    #
    #     optimizer = FusedAdam(optimizer_grouped_parameters,
    #                           lr=args.learning_rate,
    #                           bias_correction=False,
    #                           max_grad_norm=1.0)
    #     if args.loss_scale == 0:
    #         optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
    #     else:
    #         optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
    # else:
    #     optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
    # scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=num_train_optimization_steps)

    global_step = 0
    metric = LMAccuracy()
    tr_acc = AverageMeter()
    tr_loss = AverageMeter()

    train_logs = {}
    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {total_train_examples}")
    logger.info(f"  Batch size = {args.train_batch_size}" )
    logger.info(f"  Num steps = {num_train_optimization_steps}" )
    logger.info(f"  warmup_steps = {args.warmup_steps}")

    model.train()
    for epoch in range(args.epochs):
        for idx in range(args.file_num):
            epoch_dataset = PregeneratedDataset(file_id=idx, training_path=pregenerated_data, tokenizer=tokenizer,
                                                reduce_memory=args.reduce_memory)
            if args.local_rank == -1:
                train_sampler = RandomSampler(epoch_dataset)
            else:
                train_sampler = DistributedSampler(epoch_dataset)
            train_dataloader = DataLoader(epoch_dataset, sampler=train_sampler, batch_size=args.train_batch_size)

            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(train_dataloader):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, lm_label_ids = batch
                outputs = model(input_ids, segment_ids, input_mask, lm_label_ids)
                pred_output = outputs[1]
                loss = outputs[0]
                metric(logits=pred_output.view(-1, bert_config.vocab_size), target=lm_label_ids.view(-1))
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
                if args.fp16:
                    with amp.scale_loss(loss, optimizer) as scaled_loss:
                        scaled_loss.backward()
                else:
                    loss.backward()

                nb_tr_steps += 1
                tr_acc.update(metric.value(), n=input_ids.size(0))
                tr_loss.update(loss.item(), n=1)

                if (step + 1) % args.gradient_accumulation_steps == 0:
                    # if args.fp16:
                    #     # modify learning rate with special warm up BERT uses
                    #     # if args.fp16 is False, BertAdam is used that handles this automatically
                    #     lr_this_step = args.learning_rate * warmup_linear.get_lr(global_step, args.warmup_proportion)
                    #     for param_group in optimizer.param_groups:
                    #         param_group['lr'] = lr_this_step
                    scheduler.step()  # Update learning rate schedule
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

                if global_step % args.num_eval_steps == 0:
                    train_logs['loss'] = tr_loss.avg
                    train_logs['acc'] = tr_acc.avg
                    show_info = f'\n[Training]:[{epoch}/{args.epochs}]{global_step}/{num_train_optimization_steps} ' + "-".join(
                        [f' {key}: {value:.4f} ' for key, value in train_logs.items()])
                    logger.info(show_info)
                    tr_acc.reset()
                    tr_loss.reset()

                if global_step % args.num_save_steps == 0:
                    if args.local_rank in [-1, 0] and args.num_save_steps > 0:
                        # Save model checkpoint
                        output_dir = config['checkpoint_dir'] / f'checkpoint-{global_step}'
                        if not output_dir.exists():
                            output_dir.mkdir()
                        # save model
                        model_to_save = model.module if hasattr(model,'module') else model  # Take care of distributed/parallel training
                        model_to_save.save_pretrained(str(output_dir))
                        torch.save(args, str(output_dir / 'training_args.bin'))
                        logger.info("Saving model checkpoint to %s", output_dir)
                        torch.save(args, str(output_dir / 'training_args.bin'))

                        #save config
                        output_config_file = output_dir / CONFIG_NAME
                        with open(str(output_config_file), 'w') as f:
                            f.write(model_to_save.config.to_json_string())
                        #save vocab
                        tokenizer.save_vocabulary(output_dir)
def main():
    parser = ArgumentParser()
    parser.add_argument("--arch", default='bert', type=str)  # 使用的预训练语言模型
    parser.add_argument("--do_data", action='store_true')  # 进行数据切分
    parser.add_argument("--do_train", action='store_true')  # 进行模型训练
    parser.add_argument("--do_test", action='store_true')  # 进行模型推断
    parser.add_argument("--save_best", action='store_true')  # 保留最好的模型
    parser.add_argument("--do_lower_case", action='store_true')
    parser.add_argument('--data_name', default='ccks', type=str)  # 数据集的名字
    parser.add_argument("--mode", default='min', type=str)  # 设置monitor关注的角度
    parser.add_argument("--monitor", default='valid_loss', type=str)
    parser.add_argument("--task_type", default='base', type=str)

    parser.add_argument("--epochs", default=4, type=int)
    parser.add_argument("--resume_path", default='',
                        type=str)  # 恢复路径,从pretrained model中载入模型
    parser.add_argument("--predict_checkpoints", type=int, default=0)
    parser.add_argument("--valid_size", default=0.2, type=float)  # 验证集的大小
    parser.add_argument("--local_rank", type=int, default=-1)
    parser.add_argument("--sorted",
                        default=1,
                        type=int,
                        help='1 : True  0:False ')  # 表示是否按照序列的长度排序
    parser.add_argument("--n_gpu",
                        type=str,
                        default='0',
                        help='"0,1,.." or "0" or "" ')
    parser.add_argument(
        '--gradient_accumulation_steps', type=int,
        default=1)  # gradient_accumulation_steps的大小,用于解决内存小,无法使用大batch_size的问题
    parser.add_argument("--train_batch_size", default=8,
                        type=int)  # 训练集batch_size
    parser.add_argument('--eval_batch_size', default=8,
                        type=int)  # 测试集batch_size
    parser.add_argument("--train_max_seq_len", default=256,
                        type=int)  # 训练集sequence的最大长度
    parser.add_argument("--eval_max_seq_len", default=256,
                        type=int)  # 测试集sequence的最大长度
    parser.add_argument('--loss_scale', type=float,
                        default=0)  # TODO: 理解loss scale的作用
    parser.add_argument("--warmup_proportion", default=0.1,
                        type=float)  # 用于learning rate上的warmup proportion
    parser.add_argument("--weight_decay", default=0.01,
                        type=float)  # TODO: 理解weight decay的含义
    parser.add_argument("--adam_epsilon", default=1e-8,
                        type=float)  # adam优化器的参数
    parser.add_argument("--grad_clip", default=1.0,
                        type=float)  # TODO: 理解grad clip的含义
    parser.add_argument("--learning_rate", default=2e-5, type=float)  # 学习率
    parser.add_argument('--seed', type=int, default=42)  # 随机数种子
    parser.add_argument('--fp16', action='store_true')  # TODO: 理解fp16是什么
    parser.add_argument('--fp16_opt_level', type=str, default='O1')
    args = parser.parse_args()
    # 初始化日志记录器logger
    config['log_dir'].mkdir(exist_ok=True)  # 源代码没有写这句代码
    init_logger(
        log_file=config['log_dir'] /
        f'{args.arch}-{time.strftime("%Y-%m-%d-%H:%M:%S", time.localtime())}.log'
    )
    config['checkpoint_dir'] = config[
        'checkpoint_dir'] / args.arch / args.task_type  # 重新调整输出的位置
    config['checkpoint_dir'].mkdir(exist_ok=True)
    BASE_DIR = Path('pybert')
    config[
        'raw_data_path'] = BASE_DIR / f'dataset/train_{args.task_type}_sample.csv'
    config['test_path'] = BASE_DIR / f'dataset/test_{args.task_type}.csv'
    config['figure_dir'] = config['figure_dir'] / f'{args.task_type}'
    config['figure_dir'].mkdir(exist_ok=True)
    # 动态修改文件路径
    # BASE_DIR = Path('pybert')
    # if args.task_type == 'trans':
    #     config['raw_data_path'] = BASE_DIR / 'dataset/train_trans_sample.csv'
    #     config['test_path'] = BASE_DIR / 'dataset/test_trans.csv'
    #     config['figure_dir'] = config['figure_dir'] / f'{args.task_type}'
    #     config['figure_dir'].mkdir(exist_ok=True)
    # elif args.task_type == 'base':
    #     config['raw_data_path'] = BASE_DIR / 'dataset/train_base_sample.csv'
    #     config['test_path'] = BASE_DIR / 'dataset/test_base.csv'
    #     config['figure_dir'] = config['figure_dir'] / f'{args.task_type}'
    #     config['figure_dir'].mkdir(exist_ok=True)
    # else:
    #     raise ValueError(f"Invalid task_type {args.task_type}")

    # Good practice: save your training arguments together with the trained model
    torch.save(args, config['checkpoint_dir'] / 'training_args.bin')
    seed_everything(args.seed)  # 一个方法设置所有的seed
    logger.info("Training/evaluation parameters %s", args)
    if args.do_data:
        from pybert.io.task_data import TaskData
        data = TaskData()
        ids, targets, sentences = data.read_data(
            raw_data_path=config['raw_data_path'],
            preprocessor=ChinesePreProcessor(),
            is_train=True)
        data.train_val_split(X=sentences,
                             y=targets,
                             shuffle=True,
                             stratify=False,
                             valid_size=args.valid_size,
                             data_dir=config['data_dir'],
                             data_name=args.data_name,
                             task_type=args.task_type)  # 增加了task_type参数
    if args.do_train:
        run_train(args)

    if args.do_test:
        run_test(args)
def run_train(args):
    # --------- data
    model_to_use = "roberta-large"
    processor = RobertaProcessor(model_type=model_to_use) #vocab_path=config['roberta_vocab_path'], merge_path=config['roberta_merge_path'])
    label_list = processor.get_labels()
    label2id = {label: i for i, label in enumerate(label_list)}
    id2label = {i: label for i, label in enumerate(label_list)}

    train_data = processor.get_train(config['data_dir'] / f"{args.data_name}.train.pkl")
    
    train_examples = processor.create_examples(lines=train_data,
                                               example_type='train',
                                               cached_examples_file=config[
                                                    'data_dir'] / f"cached_train_examples_{args.arch}")
    train_features = processor.create_features(examples=train_examples,
                                               max_seq_len=args.train_max_seq_len,
                                               cached_features_file=config[
                                                    'data_dir'] / "cached_train_features_{}_{}".format(
                                                   args.train_max_seq_len, args.arch
                                               ))
    train_dataset = processor.create_dataset(train_features, is_sorted=args.sorted)
    
    train_sampler = RandomSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size,
                                  collate_fn=collate_fn)

    valid_data = processor.get_dev(config['data_dir'] / f"{args.data_name}.valid.pkl")
    valid_examples = processor.create_examples(lines=valid_data,
                                               example_type='valid',
                                               cached_examples_file=config[
                                                'data_dir'] / f"cached_valid_examples_{args.arch}")

    valid_features = processor.create_features(examples=valid_examples,
                                               max_seq_len=args.eval_max_seq_len,
                                               cached_features_file=config[
                                                'data_dir'] / "cached_valid_features_{}_{}".format(
                                                   args.eval_max_seq_len, args.arch
                                               ))
    valid_dataset = processor.create_dataset(valid_features)
    valid_sampler = SequentialSampler(valid_dataset)
    valid_dataloader = DataLoader(valid_dataset, sampler=valid_sampler, batch_size=args.eval_batch_size,
                                  collate_fn=collate_fn)
    
    
    # ------- model
    logger.info("initializing model")
    if args.resume_path:
        args.resume_path = Path(args.resume_path)
        model = RobertaForMultiLable.from_pretrained(args.resume_path, num_labels=len(label_list))
    else:
        model = RobertaForMultiLable.from_pretrained(model_to_use, num_labels=len(label_list))
    #config['roberta_model_dir']
    print("""\n\nname            module\n----------------------""")
    for name, module in model.named_children():
        if name == "roberta":
            for n, _ in module.named_children():
                print(f"{name}:{n}")
        else:
            print("{:15} {}".format(name, module))
    print()
    #return
    # print("================= train dataloader length is", len(train_dataloader), "=================\n")
    t_total = int(len(train_dataloader) / args.gradient_accumulation_steps * args.epochs)

    param_optimizer = list(model.named_parameters())
    
    no_decay = ['bias', 'LayerNorm.weight']
    
    optimizer_grouped_parameters = [
        {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay) and 'classifier.weight' not in n], 'weight_decay': args.weight_decay}, #
        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0},
        {'params': model.classifier.weight, 'lr': 5e-4} # best: 5e-4
        # {'params': model.classifier.bias, 'lr': 5e-4, 'weight_decay': 0.0}
    ]
    # model.parameters()
    warmup_steps = int(t_total * args.warmup_proportion)
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
    scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps,
                                                num_training_steps=t_total)
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
    # ---- callbacks
    logger.info("initializing callbacks")
    train_monitor = TrainingMonitor(file_dir=config['figure_dir'], arch=args.arch)
    model_checkpoint = ModelCheckpoint(checkpoint_dir=config['checkpoint_dir'],mode=args.mode,
                                       monitor=args.monitor,arch=args.arch,
                                       save_best_only=args.save_best)

    # **************************** training model ***********************
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_examples))
    logger.info("  Num Epochs = %d", args.epochs)
    logger.info("  Total train batch size (w. parallel, distributed & accumulation) = %d",
                args.train_batch_size * args.gradient_accumulation_steps * (
                    torch.distributed.get_world_size() if args.local_rank != -1 else 1))
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    trainer = Trainer(args=args, model=model, logger=logger, criterion=BCEWithLogLoss(), optimizer=optimizer,
                      scheduler=scheduler, early_stopping=None, training_monitor=train_monitor, 
                      model_checkpoint=model_checkpoint,
                      batch_metrics=[AccuracyThresh(thresh=0.5)],
                      epoch_metrics=[AUC(average='weighted', task_type='binary'),  # average='micro'
                                     MultiLabelReport(id2label=id2label)])
    trainer.train(train_data=train_dataloader, valid_data=valid_dataloader)
def run_train(args):
    # --------- data
    processor = BertProcessor(vocab_path=config['bert_vocab_path'], do_lower_case=args.do_lower_case)
    label_list = processor.get_labels()
    label2id = {label: i for i, label in enumerate(label_list)}
    id2label = {i: label for i, label in enumerate(label_list)}

    train_data = processor.get_train(config['data_dir'] / f"{args.data_name}.train.pkl")
    train_examples = processor.create_examples(lines=train_data,
                                               example_type='train',
                                               cached_examples_file=config['data_dir'] / f"cached_train_examples_{args.arch}")
    train_features = processor.create_features(examples=train_examples,
                                               max_seq_len=args.train_max_seq_len,
                                               cached_features_file=config[
                                                                        'data_dir'] / "cached_train_features_{}_{}".format(
                                                   args.train_max_seq_len, args.arch
                                               ))
    train_dataset = processor.create_dataset(train_features, is_sorted=args.sorted)
    if args.sorted:
        train_sampler = SequentialSampler(train_dataset)
    else:
        train_sampler = RandomSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)

    valid_data = processor.get_dev(config['data_dir'] / f"{args.data_name}.valid.pkl")
    valid_examples = processor.create_examples(lines=valid_data,
                                               example_type='valid',
                                               cached_examples_file=config['data_dir'] / f"cached_valid_examples_{args.arch}")

    valid_features = processor.create_features(examples=valid_examples,
                                               max_seq_len=args.eval_max_seq_len,
                                               cached_features_file=config['data_dir'] / "cached_valid_features_{}_{}".format(
                                                   args.eval_max_seq_len, args.arch))
    valid_dataset = processor.create_dataset(valid_features)
    valid_sampler = SequentialSampler(valid_dataset)
    valid_dataloader = DataLoader(valid_dataset, sampler=valid_sampler, batch_size=args.eval_batch_size)

    # ------- model
    logger.info("initializing model")
    if args.resume_path:
        args.resume_path = Path(args.resume_path)
        model = BertForMultiClass.from_pretrained(args.resume_path, num_labels=len(label_list))
    else:
        model = BertForMultiClass.from_pretrained(config['bert_model_dir'], num_labels=len(label_list))
    t_total = int(len(train_dataloader) / args.gradient_accumulation_steps * args.epochs)

    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
        {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
         'weight_decay': args.weight_decay},
        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
    ]
    warmup_steps = int(t_total * args.warmup_proportion)
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
    lr_scheduler = WarmupLinearSchedule(optimizer, warmup_steps=warmup_steps, t_total=t_total)

    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)

    # ---- callbacks
    logger.info("initializing callbacks")
    train_monitor = TrainingMonitor(file_dir=config['figure_dir'], arch=args.arch)
    model_checkpoint = ModelCheckpoint(checkpoint_dir=config['checkpoint_dir'], mode=args.mode,
                                       monitor=args.monitor, arch=args.arch,
                                       save_best_only=args.save_best)

    # **************************** training model ***********************
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_examples))
    logger.info("  Num Epochs = %d", args.epochs)
    logger.info("  Total train batch size (w. parallel, distributed & accumulation) = %d",
                args.train_batch_size * args.gradient_accumulation_steps * (
                    torch.distributed.get_world_size() if args.local_rank != -1 else 1))
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    trainer = Trainer(n_gpu=args.n_gpu,
                      model=model,
                      epochs=args.epochs,
                      logger=logger,
                      criterion=CrossEntropy(),
                      optimizer=optimizer,
                      lr_scheduler=lr_scheduler,
                      early_stopping=None,
                      training_monitor=train_monitor,
                      fp16=args.fp16,
                      resume_path=args.resume_path,
                      grad_clip=args.grad_clip,
                      model_checkpoint=model_checkpoint,
                      gradient_accumulation_steps=args.gradient_accumulation_steps,
                      evaluate=F1Score(),
                      class_report=ClassReport(target_names=[id2label[x] for x in range(len(label2id))]))
    trainer.train(train_data=train_dataloader, valid_data=valid_dataloader, seed=args.seed)
Example #18
0
def main():
    parser = ArgumentParser()
    parser.add_argument("--arch", default='bert', type=str)
    parser.add_argument("--do_data", action='store_true')
    parser.add_argument("--do_train", action='store_true')
    parser.add_argument("--do_test", action='store_true')
    parser.add_argument("--save_best", action='store_true')
    parser.add_argument("--do_lower_case", action='store_true')
    # parser.add_argument('--data_name', default='HPC', type=str)
    parser.add_argument("--mode", default='min', type=str)
    parser.add_argument("--monitor", default='valid_loss', type=str)

    parser.add_argument("--epochs", default=10, type=int)
    parser.add_argument("--resume_path", default='', type=str)
    parser.add_argument("--predict_checkpoints", type=int, default=0)
    parser.add_argument("--valid_size", default=0.2, type=float)
    parser.add_argument("--local_rank", type=int, default=-1)
    parser.add_argument("--sorted", default=1, type=int, help='1 : True  0:False ')
    parser.add_argument("--n_gpu", type=str, default='0', help='"0,1,.." or "0" or "" ')
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1)
    parser.add_argument("--train_batch_size", default=8, type=int)
    parser.add_argument('--eval_batch_size', default=8, type=int)
    parser.add_argument("--train_max_seq_len", default=256, type=int)
    parser.add_argument("--eval_max_seq_len", default=256, type=int)
    parser.add_argument('--loss_scale', type=float, default=0)
    parser.add_argument("--warmup_proportion", default=0.1, type=float)
    parser.add_argument("--weight_decay", default=0.01, type=float)
    parser.add_argument("--adam_epsilon", default=1e-8, type=float)
    parser.add_argument("--grad_clip", default=1.0, type=float)
    parser.add_argument("--learning_rate", default=2e-5, type=float)
    parser.add_argument('--seed', type=int, default=42)
    parser.add_argument('--fp16', action='store_true')
    parser.add_argument('--fp16_opt_level', type=str, default='O1')
    args = parser.parse_args()

    init_logger(log_file=config['log_dir'] / f'{args.arch}-{time.strftime("%Y-%m-%d-%H:%M:%S", time.localtime())}.log')
    config['checkpoint_dir'] = config['checkpoint_dir'] / args.arch
    config['checkpoint_dir'].mkdir(exist_ok=True)
    # Good practice: save your training arguments together with the trained model
    torch.save(args, config['checkpoint_dir'] / 'training_args.bin')
    seed_everything(args.seed)
    logger.info("Training/evaluation parameters %s", args)

    if args.do_data:
        data_names = []
        train_sentenses_all = []
        train_target_all = []
        from pybert.io.task_data import TaskData
        data = TaskData()
        total_valid = 0
        for filename in os.listdir(config['summary_path']):
            if filename == ".DS_Store" or filename == "summary":
                continue
            filename_int = int(filename.split('.')[0].split('_')[-1])
            if filename_int > 3500:
                try:
                    raw_data_path = os.path.join(config['summary_path'], filename)
                    # train_targets, train_sentences, val_targets, val_sentences = data.read_data(config,
                    #                                                                             raw_data_path=raw_data_path,
                    #                                                                             preprocessor=EnglishPreProcessor())
                    train_targets, train_sentences, val_targets, val_sentences = data.read_data(config,
                                                                                                raw_data_path=raw_data_path)
                    train_sentenses_all = train_sentenses_all + train_sentences
                    train_target_all = train_target_all + train_targets
                    total_valid = len(train_target_all)
                    print("valid number: ", total_valid)
                    # data.save_pickle(train_sentences, train_targets, data_dir=config['data_dir'],
                    #                  data_name=filename.split('.')[0].split('_')[-1], is_train=True)
                    # data.save_pickle(val_sentences, val_targets, data_dir=config['data_dir'],
                    #                  data_name=filename.split('.')[0].split('_')[-1], is_train=False)

                    # data_names.append(filename.split('.')[0].split('_')[-1])
                except:
                    pass
        total_valid = len(train_target_all)
        print("valid number: ", total_valid)
        data.save_pickle(train_sentenses_all, train_target_all, data_dir=config['data_dir'],
                         data_name="all_valid", is_train=False)

        # with open(config['data_name'], 'w') as f:
        #     json.dump(data_names, f)

    with open(config['data_name'], 'r') as f:
        data_names = json.load(f)

    if args.do_train:
        run_train(args, data_names)

    if args.do_test:
            run_test(args)
Example #19
0
def run_train(args, data_names):
    # --------- data
    # processor = BertProcessor(vocab_path=config['bert_vocab_path'], do_lower_case=args.do_lower_case)
    processor = BertProcessor()
    label_list = processor.get_labels()
    label2id = {label: i for i, label in enumerate(label_list)}
    id2label = {i: label for i, label in enumerate(label_list)}

    # train_data = processor.get_train(config['data_dir'] / f"{data_name}.train.pkl")
    # train_examples = processor.create_examples(lines=train_data,
    #                                            example_type='train',
    #                                            cached_examples_file=config[
    #                                                 'data_dir'] / f"cached_train_examples_{args.arch}")
    # train_features = processor.create_features(examples=train_examples,
    #                                            max_seq_len=args.train_max_seq_len,
    #                                            cached_features_file=config[
    #                                                 'data_dir'] / "cached_train_features_{}_{}".format(
    #                                                args.train_max_seq_len, args.arch
    #                                            ))
    # train_dataset = processor.create_dataset(train_features, is_sorted=args.sorted)
    # if args.sorted:
    #     train_sampler = SequentialSampler(train_dataset)
    # else:
    #     train_sampler = RandomSampler(train_dataset)
    # train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size,
    #                               collate_fn=collate_fn)
    #
    # valid_data = processor.get_dev(config['data_dir'] / f"{data_name}.valid.pkl")
    # valid_examples = processor.create_examples(lines=valid_data,
    #                                            example_type='valid',
    #                                            cached_examples_file=config[
    #                                             'data_dir'] / f"cached_valid_examples_{args.arch}")
    #
    # valid_features = processor.create_features(examples=valid_examples,
    #                                            max_seq_len=args.eval_max_seq_len,
    #                                            cached_features_file=config[
    #                                             'data_dir'] / "cached_valid_features_{}_{}".format(
    #                                                args.eval_max_seq_len, args.arch
    #                                            ))
    # valid_dataset = processor.create_dataset(valid_features)
    # valid_sampler = SequentialSampler(valid_dataset)
    # valid_dataloader = DataLoader(valid_dataset, sampler=valid_sampler, batch_size=args.eval_batch_size,
    #                               collate_fn=collate_fn)

    # ------- model
    logger.info("initializing model")
    if args.resume_path:
        args.resume_path = Path(args.resume_path)
        model = BertForMultiLable.from_pretrained(args.resume_path, num_labels=len(label_list))
    else:
        # model = BertForMultiLable.from_pretrained(config['bert_model_dir'], num_labels=len(label_list))
        model = BertForMultiLable.from_pretrained("bert-base-multilingual-cased", num_labels=len(label_list))
    #t_total = int(len(train_dataloader) / args.gradient_accumulation_steps * args.epochs)
    t_total = 200000
  
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
         {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],'weight_decay': args.weight_decay},
         {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
    ]
    warmup_steps = int(t_total * args.warmup_proportion)
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
    scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps,
                                                   num_training_steps=t_total)
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
    # ---- callbacks
    logger.info("initializing callbacks")
    train_monitor = TrainingMonitor(file_dir=config['figure_dir'], arch=args.arch)
    model_checkpoint = ModelCheckpoint(checkpoint_dir=config['checkpoint_dir'],mode=args.mode,
                                       monitor=args.monitor,arch=args.arch,
                                       save_best_only=args.save_best)

    # **************************** training model ***********************
    logger.info("***** Running training *****")
    #logger.info("  Num examples = %d", len(train_examples))
    logger.info("  Num Epochs = %d", args.epochs)
    logger.info("  Total train batch size (w. parallel, distributed & accumulation) = %d",
                args.train_batch_size * args.gradient_accumulation_steps * (
                    torch.distributed.get_world_size() if args.local_rank != -1 else 1))
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    trainer = Trainer(args= args,model=model,logger=logger,criterion=BCEWithLogLoss(),optimizer=optimizer,
                      scheduler=scheduler,early_stopping=None,training_monitor=train_monitor,
                      model_checkpoint=model_checkpoint,
                      batch_metrics=[AccuracyThresh(thresh=0.5)],
                      epoch_metrics=[AUC(average='micro', task_type='binary'),
                                     MultiLabelReport(id2label=id2label),
                                     F1Score(average='micro', task_type='binary')])

    trainer.model.zero_grad()
    seed_everything(trainer.args.seed)  # Added here for reproductibility (even between python 2 a
    
    iter_num = 0
    valid_dataloader = get_valid_dataloader(args)
    for epoch in range(trainer.start_epoch, trainer.start_epoch + trainer.args.epochs):
        trainer.logger.info(f"Epoch {epoch}/{trainer.args.epochs}")
        update_epoch = True

        for i, data_name in enumerate(data_names):
            filename_int = int(data_name)
            if filename_int > 3500:
                continue
            trainer.logger.info(f"Epoch {epoch} - summary {i+1}/{len(data_names)}"+ f": summary_{data_name}")
            # train_dataloader, valid_dataloader = get_dataloader(args, data_name)
            train_dataloader = get_dataloader(args, data_name)
            # train_log, valid_log = trainer.train(train_data=train_dataloader, valid_data=valid_dataloader, epoch=update_epoch)
            train_log = trainer.train(train_data=train_dataloader, epoch=update_epoch)
            update_epoch = False

            # if train_log == None:
            #     continue
            
            iter_num += 1

            # logs = dict(train_log)
            # show_info = f'\nEpoch: {epoch} - ' + "-".join([f' {key}: {value:.4f} ' for key, value in logs.items()])
            # trainer.logger.info(show_info)


            if iter_num % 50 == 0:
                valid_log = trainer.valid_epoch(valid_dataloader)
                logs = dict(valid_log)
                show_info = f'\nEpoch: {epoch} - ' + "-".join([f' {key}: {value:.4f} ' for key, value in logs.items()])
                trainer.logger.info(show_info)

                # save
                if trainer.training_monitor:
                    trainer.training_monitor.epoch_step(logs)

            # save model
            if trainer.model_checkpoint:
                if iter_num % 50 == 0:
                #     state = trainer.save_info(epoch, best=logs[trainer.model_checkpoint.monitor])
                    state = trainer.save_info(iter_num, best=logs[trainer.model_checkpoint.monitor])
                    trainer.model_checkpoint.bert_epoch_step(current=logs[trainer.model_checkpoint.monitor], state=state)

            # early_stopping
            if trainer.early_stopping:
                trainer.early_stopping.epoch_step(epoch=epoch, current=logs[trainer.early_stopping.monitor])
                if trainer.early_stopping.stop_training:
                    break
def run_train(args):
    # --------- data
    processor = BertProcessor(vocab_path=config['bert_vocab_path'],
                              do_lower_case=args.do_lower_case)
    label_list = processor.get_labels(args.task_type)
    label2id = {label: i for i, label in enumerate(label_list)}
    id2label = {i: label for i, label in enumerate(label_list)}

    train_data = processor.get_train(
        config['data_dir'] / f"{args.data_name}.train.{args.task_type}.pkl")
    train_examples = processor.create_examples(
        lines=train_data,
        example_type=f'train_{args.task_type}',
        cached_examples_file=config['data_dir'] /
        f"cached_train_{args.task_type}_examples_{args.arch}")
    train_features = processor.create_features(
        examples=train_examples,
        max_seq_len=args.train_max_seq_len,
        cached_features_file=config['data_dir'] /
        "cached_train_{}_features_{}_{}".format(
            args.task_type, args.train_max_seq_len, args.arch))
    train_dataset = processor.create_dataset(train_features,
                                             is_sorted=args.sorted)
    if args.sorted:
        train_sampler = SequentialSampler(train_dataset)
    else:
        train_sampler = RandomSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset,
                                  sampler=train_sampler,
                                  batch_size=args.train_batch_size,
                                  collate_fn=collate_fn)

    valid_data = processor.get_dev(
        config['data_dir'] / f"{args.data_name}.valid.{args.task_type}.pkl")
    valid_examples = processor.create_examples(
        lines=valid_data,
        example_type=f'valid_{args.task_type}',
        cached_examples_file=config['data_dir'] /
        f"cached_valid_{args.task_type}_examples_{args.arch}")

    valid_features = processor.create_features(
        examples=valid_examples,
        max_seq_len=args.eval_max_seq_len,
        cached_features_file=config['data_dir'] /
        "cached_valid_{}_features_{}_{}".format(
            args.task_type, args.eval_max_seq_len, args.arch))
    valid_dataset = processor.create_dataset(valid_features)
    valid_sampler = SequentialSampler(valid_dataset)
    valid_dataloader = DataLoader(valid_dataset,
                                  sampler=valid_sampler,
                                  batch_size=args.eval_batch_size,
                                  collate_fn=collate_fn)

    # ------- model
    logger.info("initializing model")
    if args.resume_path:
        args.resume_path = Path(args.resume_path)
        model = BertForMultiLable.from_pretrained(args.resume_path,
                                                  num_labels=len(label_list))
    else:
        if args.task_type == 'trans':
            model = BertForMultiLable_Fewshot.from_pretrained(
                Path('pybert/output/checkpoints/bert/base'),
                num_labels=len(label_list))
            #model = BertForMultiLable.from_pretrained(config['bert_model_dir'], num_labels=len(label_list))
        else:
            model = BertForMultiLable.from_pretrained(
                config['bert_model_dir'], num_labels=len(label_list))
    t_total = int(
        len(train_dataloader) / args.gradient_accumulation_steps * args.epochs)
    # 下面是optimizer和scheduler的设计
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        args.weight_decay
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    warmup_steps = int(t_total * args.warmup_proportion)
    optimizer = AdamW(optimizer_grouped_parameters,
                      lr=args.learning_rate,
                      eps=args.adam_epsilon)
    scheduler = get_linear_schedule_with_warmup(optimizer,
                                                num_warmup_steps=warmup_steps,
                                                num_training_steps=t_total)
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use fp16 training."
            )
        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level=args.fp16_opt_level)
    # ---- callbacks
    logger.info("initializing callbacks")
    train_monitor = TrainingMonitor(
        file_dir=config['figure_dir'], arch=args.arch
    )  # TODO: 理解train_monitor的作用,感觉就是一个用来绘图的东西,用于记录每一个epoch中得到的结果
    model_checkpoint = ModelCheckpoint(checkpoint_dir=config['checkpoint_dir'],
                                       mode=args.mode,
                                       monitor=args.monitor,
                                       arch=args.arch,
                                       save_best_only=args.save_best)

    # **************************** training model ***********************
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_examples))
    logger.info("  Num Epochs = %d", args.epochs)
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size * args.gradient_accumulation_steps *
        (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
    logger.info("  Gradient Accumulation steps = %d",
                args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    trainer = Trainer(
        args=args,
        model=model,
        logger=logger,
        criterion=BCEWithLogLoss(),
        optimizer=optimizer,
        scheduler=scheduler,
        early_stopping=None,
        training_monitor=train_monitor,
        model_checkpoint=model_checkpoint,
        batch_metrics=[
            AccuracyThresh(thresh=0.5)
        ],  # 作用于batch之上的metrics,在每次loss.backward()之后都会执行计算,记得区分它与loss
        epoch_metrics=[
            AUC(average='micro', task_type='binary'),  # 作用于epoch之上的metrics
            MultiLabelReport(id2label=id2label),
            F1Score(task_type='binary', average='micro', search_thresh=True)
        ])  # TODO: 考虑是否应该使用F1-score替代指标
    trainer.train(train_data=train_dataloader, valid_data=valid_dataloader)
Example #21
0
def run_train(args):
    # --------- data
    processor = BertProcessor(vocab_path=config['bert_vocab_path'],
                              do_lower_case=args.do_lower_case)

    label_list = processor.get_labels()
    label2id = {label: i for i, label in enumerate(label_list)}
    id2label = {i: label for i, label in enumerate(label_list)}

    ##Get the data for the soft training task
    train_data = processor.get_train(config['data_dir'] /
                                     f"{args.data_name}.label_train.pkl")

    print("Train data is:")
    print(train_data)

    train_examples = processor.create_examples(
        lines=train_data,
        example_type='train',
        cached_examples_file=config['data_cache'] /
        f"cached_train_label_examples_finetune{args.arch}")

    # print ("Training examples are:")
    # print (train_examples)
    train_features = processor.create_features(
        examples=train_examples,
        max_seq_len=args.train_max_seq_len,
        cached_features_file=config['data_cache'] /
        "cached_train_label_features_finetune{}_{}".format(
            args.train_max_seq_len, args.arch))

    train_dataset = processor.create_dataset(train_features,
                                             is_sorted=args.sorted)

    if args.sorted:
        train_sampler = SequentialSampler(train_dataset)
    else:
        train_sampler = RandomSampler(train_dataset)

    train_dataloader = DataLoader(train_dataset,
                                  sampler=train_sampler,
                                  batch_size=args.train_batch_size)

    ###########################################################################
    ##Get data for the semi-supervised task

    # processor_semi = BertProcessor_semi(vocab_path=config['bert_vocab_path'], do_lower_case=args.do_lower_case)

    # label_list = processor_semi.get_labels()
    # label2id = {label: i for i, label in enumerate(label_list)}
    # id2label = {i: label for i, label in enumerate(label_list)}

    train_data_semi = processor.get_train_semi(config['unlabel_data_path'])

    print("Train data is:")
    print(train_data)

    train_examples_semi = processor.create_examples_semi(
        lines=train_data_semi,
        example_type='train',
        cached_examples_file=config['data_cache'] /
        f"cached_train_unlabel_examples_finetune{args.arch}")

    # print ("Training examples are:")
    # print (train_examples)
    train_features_semi = processor.create_features_semi(
        examples=train_examples_semi,
        max_seq_len=args.train_max_seq_len,
        cached_features_file=config['data_cache'] /
        "cached_train_unlabel_features_finetune{}_{}".format(
            args.train_max_seq_len, args.arch))

    train_dataset_semi = processor.create_dataset_semi(train_features_semi,
                                                       is_sorted=args.sorted)

    if args.sorted:
        train_sampler_semi = SequentialSampler(train_dataset_semi)
    else:
        train_sampler_semi = RandomSampler(train_dataset_semi)

    train_dataloader_semi = DataLoader(train_dataset_semi,
                                       sampler=train_sampler_semi,
                                       batch_size=args.train_batch_size)

    valid_data = processor.get_dev(config['data_dir'] /
                                   f"{args.data_name}.label_valid.pkl")

    valid_examples = processor.create_examples(
        lines=valid_data,
        example_type='valid',
        cached_examples_file=config['data_cache'] /
        f"cached_valid_examples_label_finetune{args.arch}")

    valid_features = processor.create_features(
        examples=valid_examples,
        max_seq_len=args.eval_max_seq_len,
        cached_features_file=config['data_cache'] /
        "cached_valid_features_label_finetune{}_{}".format(
            args.eval_max_seq_len, args.arch))

    valid_dataset = processor.create_dataset(valid_features)
    valid_sampler = SequentialSampler(valid_dataset)

    valid_dataloader = DataLoader(valid_dataset,
                                  sampler=valid_sampler,
                                  batch_size=args.eval_batch_size)

    # ------- model
    logger.info("initializing model")

    if args.resume_path:
        args.resume_path = Path(args.resume_path)
        model = BertForMultiLable.from_pretrained(args.resume_path,
                                                  num_labels=len(label_list))

    else:
        print("Labels are:")
        print(label_list)

        # model = BertForMultiLable.from_pretrained(config['bert_model_dir'], num_labels=len(label_list))

        #model = BertForMultiLable.from_pretrained("pybert/output/checkpoints_label_finetune_soft_joint_corr_emotion/bert", num_labels=len(label_list))
        model = BertForMultiLable.from_pretrained("bert-base-uncased")

        # model = BertForMultiLable.from_pretrained("bert-base-uncased", num_labels=len(label_list))

    t_total = int(
        len(train_dataloader) / args.gradient_accumulation_steps * args.epochs)

    param_optimizer = list(model.named_parameters())
    # param_optimizer = list(filter(lambda named_param: named_param[1].requires_grad, model.named_parameters()))

    no_decay = ['bias', 'LayerNorm.weight']

    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        args.weight_decay
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]

    warmup_steps = int(t_total * args.warmup_proportion)

    optimizer = AdamW(optimizer_grouped_parameters,
                      lr=args.learning_rate,
                      eps=args.adam_epsilon)

    lr_scheduler = WarmupLinearSchedule(optimizer,
                                        warmup_steps=warmup_steps,
                                        t_total=t_total)

    ##For semi-supervision
    t_total_semi = int(
        len(train_dataloader_semi) / args.gradient_accumulation_steps *
        args.epochs)

    ##params for this model only contains the params other than the label graph
    # param_optimizer_semi = [(name, param) for (name, param) in list(model.named_parameters()) if "label_graph" not in name]

    param_optimizer_semi = [(name, param)
                            for name, param in model.named_parameters()
                            if name == 'label_graph.weight']
    # param_optimizer = list(filter(lambda named_param: named_param[1].requires_grad, model.named_parameters()))

    no_decay = ['bias', 'LayerNorm.weight']

    optimizer_grouped_parameters_semi = [{
        'params': [
            p for n, p in param_optimizer_semi
            if not any(nd in n for nd in no_decay)
        ],
        'weight_decay':
        args.weight_decay
    }, {
        'params': [
            p for n, p in param_optimizer_semi
            if any(nd in n for nd in no_decay)
        ],
        'weight_decay':
        0.0
    }]

    warmup_steps_semi = int(t_total_semi * args.warmup_proportion)

    optimizer_semi = AdamW(optimizer_grouped_parameters_semi,
                           lr=args.learning_rate,
                           eps=args.adam_epsilon)

    lr_scheduler_semi = WarmupLinearSchedule(optimizer_semi,
                                             warmup_steps=warmup_steps_semi,
                                             t_total=t_total)

    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use fp16 training."
            )
        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level=args.fp16_opt_level)

    # ---- callbacks
    logger.info("initializing callbacks")
    train_monitor = TrainingMonitor(file_dir=config['figure_dir'],
                                    arch=args.arch)

    model_checkpoint = ModelCheckpoint(checkpoint_dir=config['checkpoint_dir'],
                                       mode=args.mode,
                                       monitor=args.monitor,
                                       arch=args.arch,
                                       save_best_only=args.save_best)

    # **************************** training model ***********************
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_examples))
    logger.info("  Num Epochs = %d", args.epochs)
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size * args.gradient_accumulation_steps *
        (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
    logger.info("  Gradient Accumulation steps = %d",
                args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    trainer = Trainer(
        n_gpu=args.n_gpu,
        model=model,
        epochs=args.epochs,
        logger=logger,
        # criterion_hard=BCEWithLogLoss(),
        criterion=ContinuousBCEWithLogLoss(),
        optimizer=optimizer,
        lr_scheduler=lr_scheduler,
        optimizer_semi=optimizer_semi,
        lr_scheduler_semi=lr_scheduler_semi,
        early_stopping=None,
        training_monitor=train_monitor,
        fp16=args.fp16,
        resume_path=args.resume_path,
        grad_clip=args.grad_clip,
        model_checkpoint=model_checkpoint,
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        batch_metrics=[AccuracyThresh(thresh=0.5)],
        ##Only look at the f1 score
        epoch_metrics=[MultiLabelReport(id2label=id2label)])

    # embeddings_dict = pickle.load(open("/home/rgaonkar/context_home/rgaonkar/label_embeddings/code/Bert_Masked_LM/label_embeddings_dict.p", "rb"))

    # label_similarity_matrix = get_label_similarity_matrix(embeddings_dict, label_list)

    # ------- model
    logger.info("initializing model")

    true_labels_matrix = [sample[-1].tolist() for sample in train_dataset]
    print("True train labels:")
    print(true_labels_matrix)

    train_label_corr = get_label_corr(true_labels_matrix)

    print("True train label correlations:")
    print(train_label_corr)

    #Save the correlation matrix of the true labels in the data cache folder
    pickle.dump(train_label_corr,
                open(config['data_cache'] / "train_label_corr.p", "wb"))

    trainer.train(train_data=train_dataloader,
                  train_data_semi=train_dataloader_semi,
                  valid_data=valid_dataloader,
                  seed=args.seed,
                  prob_thresh=args.prob_thresh,
                  true_label_corr=train_label_corr,
                  tokenizer=processor.tokenizer,
                  args=args)
def run_test(args):
    # TODO: 对训练集使用micro F1-score进行结果评测
    from pybert.io.task_data import TaskData
    from pybert.test.predictor import Predictor
    data = TaskData()
    ids, targets, sentences = data.read_data(
        raw_data_path=config['test_path'],
        preprocessor=ChinesePreProcessor(),
        is_train=True)  # 设置为True
    lines = list(zip(sentences, targets))
    #print(ids,sentences)
    processor = BertProcessor(vocab_path=config['bert_vocab_path'],
                              do_lower_case=args.do_lower_case)
    label_list = processor.get_labels(args.task_type)
    id2label = {i: label for i, label in enumerate(label_list)}

    test_data = processor.get_test(lines=lines)
    test_examples = processor.create_examples(
        lines=test_data,
        example_type=f'test_{args.task_type}',
        cached_examples_file=config['data_dir'] /
        f"cached_test_{args.task_type}_examples_{args.arch}")
    test_features = processor.create_features(
        examples=test_examples,
        max_seq_len=args.eval_max_seq_len,
        cached_features_file=config['data_dir'] /
        "cached_test_{}_features_{}_{}".format(
            args.task_type, args.eval_max_seq_len, args.arch))
    test_dataset = processor.create_dataset(test_features)
    test_sampler = SequentialSampler(test_dataset)
    test_dataloader = DataLoader(test_dataset,
                                 sampler=test_sampler,
                                 batch_size=args.train_batch_size,
                                 collate_fn=collate_fn)
    model = None
    if args.task_type == 'base':
        model = BertForMultiLable.from_pretrained(config['checkpoint_dir'],
                                                  num_labels=len(label_list))
    else:
        # model = BertForMultiLable.from_pretrained(config['checkpoint_dir'], num_labels=len(label_list))
        model = BertForMultiLable_Fewshot.from_pretrained(
            config['checkpoint_dir'], num_labels=len(label_list))

    # ----------- predicting
    logger.info('model predicting....')
    predictor = Predictor(model=model, logger=logger, n_gpu=args.n_gpu)
    result = predictor.predict(data=test_dataloader)  # 感觉这个变量名叫all_logits可能更好
    # TODO: 计算F1-score,这个功能模块需要用代码测试一下~
    f1_metric = F1Score(task_type='binary',
                        average='micro',
                        search_thresh=True)
    all_logits = torch.tensor(result, dtype=torch.float)  # 转换成tensor
    all_labels = torch.tensor(targets, dtype=torch.long)  # 转换成tensor
    f1_metric(all_logits, all_labels)  # 会自动打印结果
    print(f1_metric.value())
    # 将结果写入一个文件之中
    with open('test_output/test.log', 'a+') as f:
        f.write(str(f1_metric.value()) + "\n")
    thresh = f1_metric.thresh

    ids = np.array(ids)
    df1 = pd.DataFrame(ids, index=None)
    df2 = pd.DataFrame(result, index=None)
    all_df = pd.concat([df1, df2], axis=1)
    if args.task_type == 'base':
        all_df.columns = ['id', 'zy', 'gfgqzr', 'qs', 'tz', 'ggjc']
    else:
        all_df.columns = ['id', 'sg', 'pj', 'zb', 'qsht', 'db']
    for column in all_df.columns[1:]:
        all_df[column] = all_df[column].apply(lambda x: 1 if x > thresh else 0)
    # all_df['zy'] = all_df['zy'].apply(lambda x: 1 if x>thresh else 0)
    # all_df['gfgqzr'] = all_df['gfgqzr'].apply(lambda x: 1 if x>thresh else 0)
    # all_df['qs'] = all_df['qs'].apply(lambda x: 1 if x>thresh else 0)
    # all_df['tz'] = all_df['tz'].apply(lambda x: 1 if x>thresh else 0)
    # all_df['ggjc'] = all_df['ggjc'].apply(lambda x: 1 if x>thresh else 0)
    all_df.to_csv(f"test_output/{args.task_type}/cls_out.csv", index=False)
def run_train(args):
    # --------- data
    processor = BertProcessor(vocab_path=config['bert_vocab_path'],
                              do_lower_case=args.do_lower_case)

    label_list = processor.get_labels()
    label2id = {label: i for i, label in enumerate(label_list)}
    id2label = {i: label for i, label in enumerate(label_list)}

    train_data = processor.get_train(config['data_dir'] /
                                     f"{args.data_name}.label_train.pkl")

    print("Train data is:")
    print(train_data)

    train_examples = processor.create_examples(
        lines=train_data,
        example_type='train',
        cached_examples_file=config['data_cache'] /
        f"cached_train_label_examples_finetune{args.arch}")

    # print ("Training examples are:")
    # print (train_examples)
    train_features = processor.create_features(
        examples=train_examples,
        max_seq_len=args.train_max_seq_len,
        cached_features_file=config['data_cache'] /
        "cached_train_label_features_finetune{}_{}".format(
            args.train_max_seq_len, args.arch))

    train_dataset = processor.create_dataset(train_features,
                                             is_sorted=args.sorted)

    if args.sorted:
        train_sampler = SequentialSampler(train_dataset)
    else:
        train_sampler = RandomSampler(train_dataset)

    train_dataloader = DataLoader(train_dataset,
                                  sampler=train_sampler,
                                  batch_size=args.train_batch_size)

    valid_data = processor.get_dev(config['data_dir'] /
                                   f"{args.data_name}.label_valid.pkl")

    valid_examples = processor.create_examples(
        lines=valid_data,
        example_type='valid',
        cached_examples_file=config['data_cache'] /
        f"cached_valid_examples_label_finetune{args.arch}")

    valid_features = processor.create_features(
        examples=valid_examples,
        max_seq_len=args.eval_max_seq_len,
        cached_features_file=config['data_cache'] /
        "cached_valid_features_label_finetune{}_{}".format(
            args.eval_max_seq_len, args.arch))

    valid_dataset = processor.create_dataset(valid_features)
    valid_sampler = SequentialSampler(valid_dataset)

    valid_dataloader = DataLoader(valid_dataset,
                                  sampler=valid_sampler,
                                  batch_size=args.eval_batch_size)

    # ------- model
    logger.info("initializing model")

    if args.resume_path:
        args.resume_path = Path(args.resume_path)
        model = BertForMultiLable.from_pretrained(args.resume_path,
                                                  num_labels=len(label_list))

    else:
        print("Labels are:")
        print(label_list)
        # model = BertForMultiLable.from_pretrained(config['bert_model_dir'], num_labels=len(label_list))
        model = BertForMultiLable.from_pretrained("bert-base-uncased",
                                                  num_labels=len(label_list))

    t_total = int(
        len(train_dataloader) / args.gradient_accumulation_steps * args.epochs)

    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        args.weight_decay
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    warmup_steps = int(t_total * args.warmup_proportion)
    optimizer = AdamW(optimizer_grouped_parameters,
                      lr=args.learning_rate,
                      eps=args.adam_epsilon)
    lr_scheduler = WarmupLinearSchedule(optimizer,
                                        warmup_steps=warmup_steps,
                                        t_total=t_total)

    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use fp16 training."
            )
        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level=args.fp16_opt_level)

    # ---- callbacks
    logger.info("initializing callbacks")
    train_monitor = TrainingMonitor(file_dir=config['figure_dir'],
                                    arch=args.arch)

    model_checkpoint = ModelCheckpoint(checkpoint_dir=config['checkpoint_dir'],
                                       mode=args.mode,
                                       monitor=args.monitor,
                                       arch=args.arch,
                                       save_best_only=args.save_best)

    # **************************** training model ***********************
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_examples))
    logger.info("  Num Epochs = %d", args.epochs)
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size * args.gradient_accumulation_steps *
        (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
    logger.info("  Gradient Accumulation steps = %d",
                args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    trainer = Trainer(
        n_gpu=args.n_gpu,
        model=model,
        epochs=args.epochs,
        logger=logger,
        criterion=BCEWithLogLoss(),
        optimizer=optimizer,
        lr_scheduler=lr_scheduler,
        early_stopping=None,
        training_monitor=train_monitor,
        fp16=args.fp16,
        resume_path=args.resume_path,
        grad_clip=args.grad_clip,
        model_checkpoint=model_checkpoint,
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        batch_metrics=[AccuracyThresh(thresh=0.5)],
        epoch_metrics=[
            AUC(average='micro', task_type='binary'),
            MultiLabelReport(id2label=id2label)
        ])

    # embeddings_dict = pickle.load(open("/home/rgaonkar/context_home/rgaonkar/label_embeddings/code/Bert_Masked_LM/label_embeddings_dict.p", "rb"))

    # label_similarity_matrix = get_label_similarity_matrix(embeddings_dict, label_list)

    trainer.train(train_data=train_dataloader,
                  valid_data=valid_dataloader,
                  seed=args.seed)
Example #24
0
def main():
    parser = ArgumentParser()
    parser.add_argument("--arch", default='bert', type=str)
    parser.add_argument("--do_data", action='store_true')
    parser.add_argument("--do_train", action='store_true')
    parser.add_argument("--do_test", action='store_true')
    parser.add_argument("--save_best", action='store_true')
    parser.add_argument("--do_lower_case", action='store_true')
    parser.add_argument('--data_name', default='kaggle', type=str)
    parser.add_argument("--epochs", default=6, type=int)
    parser.add_argument("--resume_path", default='', type=str)
    parser.add_argument("--mode", default='min', type=str)
    parser.add_argument("--monitor", default='valid_loss', type=str)
    parser.add_argument("--valid_size", default=0.2, type=float)
    parser.add_argument("--local_rank", type=int, default=-1)
    parser.add_argument("--sorted",
                        default=1,
                        type=int,
                        help='1 : True  0:False ')
    parser.add_argument("--n_gpu",
                        type=str,
                        default='0',
                        help='"0,1,.." or "0" or "" ')
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1)
    parser.add_argument("--train_batch_size", default=8, type=int)
    parser.add_argument('--eval_batch_size', default=8, type=int)
    parser.add_argument("--train_max_seq_len", default=256, type=int)
    parser.add_argument("--eval_max_seq_len", default=256, type=int)
    parser.add_argument('--loss_scale', type=float, default=0)
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=int,
    )
    parser.add_argument("--weight_decay", default=0.01, type=float)
    parser.add_argument("--adam_epsilon", default=1e-8, type=float)
    parser.add_argument("--grad_clip", default=1.0, type=float)
    parser.add_argument("--learning_rate", default=2e-5, type=float)
    parser.add_argument('--seed', type=int, default=42)
    parser.add_argument('--fp16', action='store_true')
    parser.add_argument('--fp16_opt_level', type=str, default='O1')
    parser.add_argument("--prob_thresh", default=0.5, type=float)

    args = parser.parse_args()
    config['checkpoint_dir'] = config['checkpoint_dir'] / args.arch
    config['checkpoint_dir'].mkdir(exist_ok=True)
    # Good practice: save your training arguments together with the trained model
    torch.save(args, config['checkpoint_dir'] / 'training_args.bin')
    seed_everything(args.seed)
    init_logger(log_file=config['log_dir'] / f"{args.arch}.log")

    logger.info("Training/evaluation parameters %s", args)

    if args.do_data:
        from pybert.io.task_data_label import TaskData
        data = TaskData()
        print("Train data path:")
        print(config['raw_data_path'])
        targets, sentences_char = data.read_data(
            raw_data_path=config['raw_data_path'],
            preprocessor=EnglishPreProcessor(),
            is_train=True)

        print("Target:")
        print(targets)
        print("                          ")
        print("Sentence:")
        print(sentences_char)
        print("                          ")
        data.train_val_split(X=sentences_char,
                             y=targets,
                             valid_size=args.valid_size,
                             data_dir=config['data_dir'],
                             data_name=args.data_name)

        ##Get the test data
        targets_test, sentences_char_test = data.read_data(
            raw_data_path=config['test_path'],
            preprocessor=EnglishPreProcessor(),
            is_train=True)

        print(targets_test)

        data.save_test_data(X=sentences_char_test,
                            y=targets_test,
                            data_dir=config['data_dir'],
                            data_name=args.data_name)

    if args.do_train:
        run_train(args)

    if args.do_test:
        run_test(args)