def main():
    parser = ArgumentParser()
    parser.add_argument("--arch", default='bert', type=str)
    parser.add_argument("--do_data", action='store_true')
    parser.add_argument("--do_train", action='store_true')
    parser.add_argument("--do_test", action='store_true')
    parser.add_argument("--save_best", action='store_true') 
    parser.add_argument("--do_lower_case", action='store_true')
    parser.add_argument('--data_name', default='train', type=str)
    parser.add_argument("--epochs", default=4, type=int)
    parser.add_argument("--resume_path", default='', type=str)
    parser.add_argument("--mode", default='max', type=str)
    parser.add_argument("--monitor", default='valid_f1', type=str)
    parser.add_argument("--valid_size", default=0.2, type=float)
    parser.add_argument("--local_rank", type=int, default=-1)
    parser.add_argument("--sorted", default=1, type=int, help='1 : True  0:False ')
    parser.add_argument("--n_gpu", type=str, default='0', help='"0,1,.." or "0" or "" ')
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1)
    parser.add_argument("--train_batch_size", default=8, type=int)
    parser.add_argument('--eval_batch_size', default=8, type=int)
    parser.add_argument("--train_max_seq_len", default=256, type=int)
    parser.add_argument("--eval_max_seq_len", default=256, type=int)
    parser.add_argument('--loss_scale', type=float, default=0)
    parser.add_argument("--warmup_proportion", default=0.1, type=int, )
    parser.add_argument("--weight_decay", default=0.01, type=float)
    parser.add_argument("--adam_epsilon", default=1e-8, type=float)
    parser.add_argument("--grad_clip", default=1.0, type=float)
    parser.add_argument("--learning_rate", default=2e-5, type=float)
    parser.add_argument('--seed', type=int, default=42)
    parser.add_argument('--fp16', action='store_true')
    parser.add_argument('--fp16_opt_level', type=str, default='O1')

    args = parser.parse_args()
    config['checkpoint_dir'] = config['checkpoint_dir'] / args.arch
    config['checkpoint_dir'].mkdir(exist_ok=True)
    # Good practice: save your training arguments together with the trained model
    torch.save(args, config['checkpoint_dir'] / 'training_args.bin')
    seed_everything(args.seed)
    init_logger(log_file=config['log_dir'] / f"{args.arch}.log")

    logger.info("Training/evaluation parameters %s", args)

    if args.do_data:
        from pybert.io.task_data import TaskData
        processor = BertProcessor(vocab_path=config['bert_vocab_path'], do_lower_case=args.do_lower_case)
        label_list = processor.get_labels()
        label2id = {label: i for i, label in enumerate(label_list)}
        data = TaskData()
        targets, sentences = data.read_data(raw_data_path=config['raw_data_path'],
                                            preprocessor=None, is_train=True,label2id=label2id)
        data.train_val_split(X=sentences, y=targets, shuffle=True, stratify=targets,
                             valid_size=args.valid_size, data_dir=config['data_dir'],
                             data_name=args.data_name)
    if args.do_train:
        run_train(args)

    if args.do_test:
        run_test(args)
Example #2
0
def main():
    parser = ArgumentParser()
    parser.add_argument("--arch", default='bert', type=str)
    parser.add_argument("--do_data", action='store_true')
    parser.add_argument("--train", action='store_true')
    parser.add_argument("--test", action='store_true')
    parser.add_argument("--save_best", action='store_true')
    parser.add_argument("--do_lower_case", action='store_true')
    parser.add_argument('--data_name', default='job_dataset', type=str)
    parser.add_argument("--epochs", default=10, type=int)
    parser.add_argument("--resume_path", default='', type=str)
    parser.add_argument("--test_path", default='', type=str)
    parser.add_argument("--mode", default='min', type=str)
    parser.add_argument("--monitor", default='valid_loss', type=str)
    parser.add_argument("--valid_size", default=0.05, type=float)
    parser.add_argument("--local_rank", type=int, default=-1)
    parser.add_argument("--sorted",
                        default=1,
                        type=int,
                        help='1 : True  0:False ')
    parser.add_argument("--n_gpu",
                        type=str,
                        default='0',
                        help='"0,1,.." or "0" or "" ')
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1)
    parser.add_argument("--train_batch_size", default=4, type=int)
    parser.add_argument('--eval_batch_size', default=4, type=int)
    parser.add_argument("--train_max_seq_len", default=256, type=int)
    parser.add_argument("--eval_max_seq_len", default=256, type=int)
    parser.add_argument('--loss_scale', type=float, default=0)
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=int,
    )
    parser.add_argument("--weight_decay", default=0.01, type=float)
    parser.add_argument("--adam_epsilon", default=1e-8, type=float)
    parser.add_argument("--grad_clip", default=1.0, type=float)
    parser.add_argument("--learning_rate", default=1.0e-4, type=float)
    parser.add_argument('--seed', type=int, default=42)
    parser.add_argument('--fp16', action='store_true')
    parser.add_argument('--fp16_opt_level', type=str, default='O1')
    parser.add_argument('--predict_labels', type=bool, default=False)
    parser.add_argument('--predict_idx',
                        type=str,
                        default="0",
                        help=' "idx" or "start-end" or "all" ')

    args = parser.parse_args()
    config['checkpoint_dir'] = config['checkpoint_dir'] / args.arch
    config['checkpoint_dir'].mkdir(exist_ok=True)
    torch.save(args, config['checkpoint_dir'] / 'training_args.bin')
    seed_everything(args.seed)
    init_logger(log_file=config['log_dir'] / f"{args.arch}.log")

    logger.info("Training/evaluation parameters %s", args)

    if args.do_data:
        from pybert.io.task_data import TaskData
        data = TaskData()
        targets, sentences = data.read_data(
            raw_data_path=config['raw_data_path'],
            preprocessor=EnglishPreProcessor(),
            is_train=True)
        data.train_val_split(X=sentences,
                             y=targets,
                             shuffle=False,
                             stratify=False,
                             valid_size=args.valid_size,
                             data_dir=config['data_dir'],
                             data_name=args.data_name)
    if args.train:
        run_train(args)

    if args.test:
        run_test(args)
def main():
    parser = ArgumentParser()
    parser.add_argument("--arch", default='bert', type=str)
    parser.add_argument("--do_data", action='store_true')
    parser.add_argument("--do_train", action='store_true')
    parser.add_argument("--do_test", action='store_true')
    parser.add_argument("--save_best", action='store_true')
    parser.add_argument("--do_lower_case", action='store_true')
    parser.add_argument('--data_name', default='kaggle', type=str)
    parser.add_argument("--mode", default='min', type=str)
    parser.add_argument("--monitor", default='valid_loss', type=str)

    parser.add_argument("--epochs", default=20, type=int)
    parser.add_argument("--resume_path", default='', type=str)
    parser.add_argument("--predict_checkpoints", type=int, default=0)
    parser.add_argument("--valid_size", default=0.2, type=float)
    parser.add_argument("--local_rank", type=int, default=-1)
    parser.add_argument("--sorted",
                        default=1,
                        type=int,
                        help='1 : True  0:False ')
    parser.add_argument("--n_gpu",
                        type=str,
                        default='0',
                        help='"0,1,.." or "0" or "" ')
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1)
    parser.add_argument("--train_batch_size", default=8, type=int)
    parser.add_argument('--eval_batch_size', default=8, type=int)
    parser.add_argument("--train_max_seq_len", default=256, type=int)
    parser.add_argument("--eval_max_seq_len", default=256, type=int)
    parser.add_argument('--loss_scale', type=float, default=0)
    parser.add_argument("--warmup_proportion", default=0.1, type=float)
    parser.add_argument("--weight_decay", default=0.01, type=float)
    parser.add_argument("--adam_epsilon", default=1e-8, type=float)
    parser.add_argument("--grad_clip", default=1.0, type=float)
    parser.add_argument("--learning_rate", default=2e-5, type=float)
    parser.add_argument('--seed', type=int, default=42)
    parser.add_argument('--fp16', action='store_true')
    parser.add_argument('--fp16_opt_level', type=str, default='O1')
    args = parser.parse_args()

    init_logger(
        log_file=config['log_dir'] /
        f'{args.arch}-{time.strftime("%Y-%m-%d-%H:%M:%S", time.localtime())}.log'
    )
    config['checkpoint_dir'] = config['checkpoint_dir'] / args.arch
    config['checkpoint_dir'].mkdir(exist_ok=True)
    # Good practice: save your training arguments together with the trained model
    torch.save(args, config['checkpoint_dir'] / 'training_args.bin')
    seed_everything(args.seed)
    logger.info("Training/evaluation parameters %s", args)
    args.save_best = False
    args.do_train = True
    args.resume_path = 'pybert/output/checkpoints/bert/checkpoint-epoch-3'
    args.do_lower_case = True
    if args.do_data:
        from pybert.io.task_data import TaskData
        data = TaskData()
        targets, sentences = data.read_data(
            raw_data_path=config['raw_data_path'],
            preprocessor=EnglishPreProcessor(),
            is_train=True)
        data.train_val_split(X=sentences,
                             y=targets,
                             shuffle=True,
                             stratify=False,
                             valid_size=args.valid_size,
                             data_dir=config['data_dir'],
                             data_name=args.data_name)
    if args.do_train:
        run_train(args)

    if args.do_test:
        run_test(args)
def main():
    parser = ArgumentParser()
    parser.add_argument("--arch", default='bert', type=str)  # 使用的预训练语言模型
    parser.add_argument("--do_data", action='store_true')  # 进行数据切分
    parser.add_argument("--do_train", action='store_true')  # 进行模型训练
    parser.add_argument("--do_test", action='store_true')  # 进行模型推断
    parser.add_argument("--save_best", action='store_true')  # 保留最好的模型
    parser.add_argument("--do_lower_case", action='store_true')
    parser.add_argument('--data_name', default='ccks', type=str)  # 数据集的名字
    parser.add_argument("--mode", default='min', type=str)  # 设置monitor关注的角度
    parser.add_argument("--monitor", default='valid_loss', type=str)
    parser.add_argument("--task_type", default='base', type=str)

    parser.add_argument("--epochs", default=4, type=int)
    parser.add_argument("--resume_path", default='',
                        type=str)  # 恢复路径,从pretrained model中载入模型
    parser.add_argument("--predict_checkpoints", type=int, default=0)
    parser.add_argument("--valid_size", default=0.2, type=float)  # 验证集的大小
    parser.add_argument("--local_rank", type=int, default=-1)
    parser.add_argument("--sorted",
                        default=1,
                        type=int,
                        help='1 : True  0:False ')  # 表示是否按照序列的长度排序
    parser.add_argument("--n_gpu",
                        type=str,
                        default='0',
                        help='"0,1,.." or "0" or "" ')
    parser.add_argument(
        '--gradient_accumulation_steps', type=int,
        default=1)  # gradient_accumulation_steps的大小,用于解决内存小,无法使用大batch_size的问题
    parser.add_argument("--train_batch_size", default=8,
                        type=int)  # 训练集batch_size
    parser.add_argument('--eval_batch_size', default=8,
                        type=int)  # 测试集batch_size
    parser.add_argument("--train_max_seq_len", default=256,
                        type=int)  # 训练集sequence的最大长度
    parser.add_argument("--eval_max_seq_len", default=256,
                        type=int)  # 测试集sequence的最大长度
    parser.add_argument('--loss_scale', type=float,
                        default=0)  # TODO: 理解loss scale的作用
    parser.add_argument("--warmup_proportion", default=0.1,
                        type=float)  # 用于learning rate上的warmup proportion
    parser.add_argument("--weight_decay", default=0.01,
                        type=float)  # TODO: 理解weight decay的含义
    parser.add_argument("--adam_epsilon", default=1e-8,
                        type=float)  # adam优化器的参数
    parser.add_argument("--grad_clip", default=1.0,
                        type=float)  # TODO: 理解grad clip的含义
    parser.add_argument("--learning_rate", default=2e-5, type=float)  # 学习率
    parser.add_argument('--seed', type=int, default=42)  # 随机数种子
    parser.add_argument('--fp16', action='store_true')  # TODO: 理解fp16是什么
    parser.add_argument('--fp16_opt_level', type=str, default='O1')
    args = parser.parse_args()
    # 初始化日志记录器logger
    config['log_dir'].mkdir(exist_ok=True)  # 源代码没有写这句代码
    init_logger(
        log_file=config['log_dir'] /
        f'{args.arch}-{time.strftime("%Y-%m-%d-%H:%M:%S", time.localtime())}.log'
    )
    config['checkpoint_dir'] = config[
        'checkpoint_dir'] / args.arch / args.task_type  # 重新调整输出的位置
    config['checkpoint_dir'].mkdir(exist_ok=True)
    BASE_DIR = Path('pybert')
    config[
        'raw_data_path'] = BASE_DIR / f'dataset/train_{args.task_type}_sample.csv'
    config['test_path'] = BASE_DIR / f'dataset/test_{args.task_type}.csv'
    config['figure_dir'] = config['figure_dir'] / f'{args.task_type}'
    config['figure_dir'].mkdir(exist_ok=True)
    # 动态修改文件路径
    # BASE_DIR = Path('pybert')
    # if args.task_type == 'trans':
    #     config['raw_data_path'] = BASE_DIR / 'dataset/train_trans_sample.csv'
    #     config['test_path'] = BASE_DIR / 'dataset/test_trans.csv'
    #     config['figure_dir'] = config['figure_dir'] / f'{args.task_type}'
    #     config['figure_dir'].mkdir(exist_ok=True)
    # elif args.task_type == 'base':
    #     config['raw_data_path'] = BASE_DIR / 'dataset/train_base_sample.csv'
    #     config['test_path'] = BASE_DIR / 'dataset/test_base.csv'
    #     config['figure_dir'] = config['figure_dir'] / f'{args.task_type}'
    #     config['figure_dir'].mkdir(exist_ok=True)
    # else:
    #     raise ValueError(f"Invalid task_type {args.task_type}")

    # Good practice: save your training arguments together with the trained model
    torch.save(args, config['checkpoint_dir'] / 'training_args.bin')
    seed_everything(args.seed)  # 一个方法设置所有的seed
    logger.info("Training/evaluation parameters %s", args)
    if args.do_data:
        from pybert.io.task_data import TaskData
        data = TaskData()
        ids, targets, sentences = data.read_data(
            raw_data_path=config['raw_data_path'],
            preprocessor=ChinesePreProcessor(),
            is_train=True)
        data.train_val_split(X=sentences,
                             y=targets,
                             shuffle=True,
                             stratify=False,
                             valid_size=args.valid_size,
                             data_dir=config['data_dir'],
                             data_name=args.data_name,
                             task_type=args.task_type)  # 增加了task_type参数
    if args.do_train:
        run_train(args)

    if args.do_test:
        run_test(args)