def run_train(args):
    # --------- data
    processor = BertProcessor(vocab_path=config['bert_vocab_path'], do_lower_case=args.do_lower_case)
    label_list = processor.get_labels()
    label2id = {label: i for i, label in enumerate(label_list)}
    id2label = {i: label for i, label in enumerate(label_list)}

    train_data = processor.get_train(config['data_dir'] / f"{args.data_name}.train.pkl")
    train_examples = processor.create_examples(lines=train_data,
                                               example_type='train',
                                               cached_examples_file=config['data_dir'] / f"cached_train_examples_{args.arch}")
    train_features = processor.create_features(examples=train_examples,
                                               max_seq_len=args.train_max_seq_len,
                                               cached_features_file=config[
                                                                        'data_dir'] / "cached_train_features_{}_{}".format(
                                                   args.train_max_seq_len, args.arch
                                               ))
    train_dataset = processor.create_dataset(train_features, is_sorted=args.sorted)
    if args.sorted:
        train_sampler = SequentialSampler(train_dataset)
    else:
        train_sampler = RandomSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)

    valid_data = processor.get_dev(config['data_dir'] / f"{args.data_name}.valid.pkl")
    valid_examples = processor.create_examples(lines=valid_data,
                                               example_type='valid',
                                               cached_examples_file=config['data_dir'] / f"cached_valid_examples_{args.arch}")

    valid_features = processor.create_features(examples=valid_examples,
                                               max_seq_len=args.eval_max_seq_len,
                                               cached_features_file=config['data_dir'] / "cached_valid_features_{}_{}".format(
                                                   args.eval_max_seq_len, args.arch))
    valid_dataset = processor.create_dataset(valid_features)
    valid_sampler = SequentialSampler(valid_dataset)
    valid_dataloader = DataLoader(valid_dataset, sampler=valid_sampler, batch_size=args.eval_batch_size)

    # ------- model
    logger.info("initializing model")
    if args.resume_path:
        args.resume_path = Path(args.resume_path)
        model = BertForMultiClass.from_pretrained(args.resume_path, num_labels=len(label_list))
    else:
        model = BertForMultiClass.from_pretrained(config['bert_model_dir'], num_labels=len(label_list))
    t_total = int(len(train_dataloader) / args.gradient_accumulation_steps * args.epochs)

    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
        {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
         'weight_decay': args.weight_decay},
        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
    ]
    warmup_steps = int(t_total * args.warmup_proportion)
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
    lr_scheduler = WarmupLinearSchedule(optimizer, warmup_steps=warmup_steps, t_total=t_total)

    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)

    # ---- callbacks
    logger.info("initializing callbacks")
    train_monitor = TrainingMonitor(file_dir=config['figure_dir'], arch=args.arch)
    model_checkpoint = ModelCheckpoint(checkpoint_dir=config['checkpoint_dir'], mode=args.mode,
                                       monitor=args.monitor, arch=args.arch,
                                       save_best_only=args.save_best)

    # **************************** training model ***********************
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_examples))
    logger.info("  Num Epochs = %d", args.epochs)
    logger.info("  Total train batch size (w. parallel, distributed & accumulation) = %d",
                args.train_batch_size * args.gradient_accumulation_steps * (
                    torch.distributed.get_world_size() if args.local_rank != -1 else 1))
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    trainer = Trainer(n_gpu=args.n_gpu,
                      model=model,
                      epochs=args.epochs,
                      logger=logger,
                      criterion=CrossEntropy(),
                      optimizer=optimizer,
                      lr_scheduler=lr_scheduler,
                      early_stopping=None,
                      training_monitor=train_monitor,
                      fp16=args.fp16,
                      resume_path=args.resume_path,
                      grad_clip=args.grad_clip,
                      model_checkpoint=model_checkpoint,
                      gradient_accumulation_steps=args.gradient_accumulation_steps,
                      evaluate=F1Score(),
                      class_report=ClassReport(target_names=[id2label[x] for x in range(len(label2id))]))
    trainer.train(train_data=train_dataloader, valid_data=valid_dataloader, seed=args.seed)
Example #2
0
def main():
    # **************************** Log initial data ***********************
    logger = init_logger(log_name=config['model']['arch'],
                         log_dir=config['output']['log_dir'])
    logger.info(f"seed is {config['train']['seed']}")
    device = f"cuda: {config['train']['n_gpu'][0] if len(config['train']['n_gpu']) else 'cpu'}"
    seed_everything(seed=config['train']['seed'], device=device)
    logger.info('starting load data from disk')
    id2label = {value: key for key, value in config['label2id'].items()}

    DT = DataTransformer(logger=logger, seed=config['train']['seed'])

    targets, sentences = DT.read_data(
        raw_data_path=config['data']['raw_data_path'],
        preprocessor=EnglishPreProcessor(),
        is_train=True)

    train, valid = DT.train_val_split(
        X=sentences,
        y=targets,
        save=True,
        shuffle=True,
        stratify=False,
        valid_size=config['train']['valid_size'],
        train_path=config['data']['train_file_path'],
        valid_path=config['data']['valid_file_path'])

    tokenizer = BertTokenizer(
        vocab_file=config['pretrained']['bert']['vocab_path'],
        do_lower_case=config['train']['do_lower_case'])

    # train
    train_dataset = CreateDataset(data=train,
                                  tokenizer=tokenizer,
                                  max_seq_len=config['train']['max_seq_len'],
                                  seed=config['train']['seed'],
                                  example_type='train')
    # valid
    valid_dataset = CreateDataset(data=valid,
                                  tokenizer=tokenizer,
                                  max_seq_len=config['train']['max_seq_len'],
                                  seed=config['train']['seed'],
                                  example_type='valid')
    # train loader
    train_loader = DataLoader(dataset=train_dataset,
                              batch_size=config['train']['batch_size'],
                              num_workers=config['train']['num_workers'],
                              shuffle=True,
                              drop_last=False,
                              pin_memory=False)
    # validation set loader
    valid_loader = DataLoader(dataset=valid_dataset,
                              batch_size=config['train']['batch_size'],
                              num_workers=config['train']['num_workers'],
                              shuffle=False,
                              drop_last=False,
                              pin_memory=False)

    # **************************** initialize model ***********************
    logger.info("initializing model")
    model = BertFine.from_pretrained(
        config['pretrained']['bert']['bert_model_dir'],
        cache_dir=config['output']['cache_dir'],
        num_classes=len(id2label))

    # ************************** set params *************************
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]

    num_train_steps = int(
        len(train_dataset.examples) / config['train']['batch_size'] /
        config['train']['gradient_accumulation_steps'] *
        config['train']['epochs'])
    # t_total: total number of training steps for the learning rate schedule
    # warmup: portion of t_total for the warmup
    optimizer = BertAdam(optimizer_grouped_parameters,
                         lr=config['train']['learning_rate'],
                         warmup=config['train']['warmup_proportion'],
                         t_total=num_train_steps)

    # **************************** callbacks ***********************
    logger.info("initializing callbacks")
    # model checkpoint
    model_checkpoint = ModelCheckpoint(
        checkpoint_dir=config['output']['checkpoint_dir'],
        mode=config['callbacks']['mode'],
        monitor=config['callbacks']['monitor'],
        save_best_only=config['callbacks']['save_best_only'],
        arch=config['model']['arch'],
        logger=logger)
    # monitor
    train_monitor = TrainingMonitor(file_dir=config['output']['figure_dir'],
                                    arch=config['model']['arch'])
    # learning rate scheduler
    lr_scheduler = BertLR(optimizer=optimizer,
                          learning_rate=config['train']['learning_rate'],
                          t_total=num_train_steps,
                          warmup=config['train']['warmup_proportion'])

    # **************************** training model ***********************
    logger.info('training model....')

    train_configs = {
        'model':
        model,
        'logger':
        logger,
        'optimizer':
        optimizer,
        'resume':
        config['train']['resume'],
        'epochs':
        config['train']['epochs'],
        'n_gpu':
        config['train']['n_gpu'],
        'gradient_accumulation_steps':
        config['train']['gradient_accumulation_steps'],
        'epoch_metrics': [F1Score(average='micro', task_type='binary')],
        'batch_metrics': [AccuracyThresh(thresh=0.5)],
        'criterion':
        BCEWithLogLoss(),
        'model_checkpoint':
        model_checkpoint,
        'training_monitor':
        train_monitor,
        'lr_scheduler':
        lr_scheduler,
        'early_stopping':
        None,
        'verbose':
        1
    }

    trainer = Trainer(train_configs=train_configs)
    trainer.train(train_data=train_loader, valid_data=valid_loader)
    if len(config['train']['n_gpu']) > 0:
        torch.cuda.empty_cache()
Example #3
0
def run_train(args, data_names):
    # --------- data
    # processor = BertProcessor(vocab_path=config['bert_vocab_path'], do_lower_case=args.do_lower_case)
    processor = BertProcessor()
    label_list = processor.get_labels()
    label2id = {label: i for i, label in enumerate(label_list)}
    id2label = {i: label for i, label in enumerate(label_list)}

    # train_data = processor.get_train(config['data_dir'] / f"{data_name}.train.pkl")
    # train_examples = processor.create_examples(lines=train_data,
    #                                            example_type='train',
    #                                            cached_examples_file=config[
    #                                                 'data_dir'] / f"cached_train_examples_{args.arch}")
    # train_features = processor.create_features(examples=train_examples,
    #                                            max_seq_len=args.train_max_seq_len,
    #                                            cached_features_file=config[
    #                                                 'data_dir'] / "cached_train_features_{}_{}".format(
    #                                                args.train_max_seq_len, args.arch
    #                                            ))
    # train_dataset = processor.create_dataset(train_features, is_sorted=args.sorted)
    # if args.sorted:
    #     train_sampler = SequentialSampler(train_dataset)
    # else:
    #     train_sampler = RandomSampler(train_dataset)
    # train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size,
    #                               collate_fn=collate_fn)
    #
    # valid_data = processor.get_dev(config['data_dir'] / f"{data_name}.valid.pkl")
    # valid_examples = processor.create_examples(lines=valid_data,
    #                                            example_type='valid',
    #                                            cached_examples_file=config[
    #                                             'data_dir'] / f"cached_valid_examples_{args.arch}")
    #
    # valid_features = processor.create_features(examples=valid_examples,
    #                                            max_seq_len=args.eval_max_seq_len,
    #                                            cached_features_file=config[
    #                                             'data_dir'] / "cached_valid_features_{}_{}".format(
    #                                                args.eval_max_seq_len, args.arch
    #                                            ))
    # valid_dataset = processor.create_dataset(valid_features)
    # valid_sampler = SequentialSampler(valid_dataset)
    # valid_dataloader = DataLoader(valid_dataset, sampler=valid_sampler, batch_size=args.eval_batch_size,
    #                               collate_fn=collate_fn)

    # ------- model
    logger.info("initializing model")
    if args.resume_path:
        args.resume_path = Path(args.resume_path)
        model = BertForMultiLable.from_pretrained(args.resume_path, num_labels=len(label_list))
    else:
        # model = BertForMultiLable.from_pretrained(config['bert_model_dir'], num_labels=len(label_list))
        model = BertForMultiLable.from_pretrained("bert-base-multilingual-cased", num_labels=len(label_list))
    #t_total = int(len(train_dataloader) / args.gradient_accumulation_steps * args.epochs)
    t_total = 200000
  
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
         {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],'weight_decay': args.weight_decay},
         {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
    ]
    warmup_steps = int(t_total * args.warmup_proportion)
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
    scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps,
                                                   num_training_steps=t_total)
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
    # ---- callbacks
    logger.info("initializing callbacks")
    train_monitor = TrainingMonitor(file_dir=config['figure_dir'], arch=args.arch)
    model_checkpoint = ModelCheckpoint(checkpoint_dir=config['checkpoint_dir'],mode=args.mode,
                                       monitor=args.monitor,arch=args.arch,
                                       save_best_only=args.save_best)

    # **************************** training model ***********************
    logger.info("***** Running training *****")
    #logger.info("  Num examples = %d", len(train_examples))
    logger.info("  Num Epochs = %d", args.epochs)
    logger.info("  Total train batch size (w. parallel, distributed & accumulation) = %d",
                args.train_batch_size * args.gradient_accumulation_steps * (
                    torch.distributed.get_world_size() if args.local_rank != -1 else 1))
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    trainer = Trainer(args= args,model=model,logger=logger,criterion=BCEWithLogLoss(),optimizer=optimizer,
                      scheduler=scheduler,early_stopping=None,training_monitor=train_monitor,
                      model_checkpoint=model_checkpoint,
                      batch_metrics=[AccuracyThresh(thresh=0.5)],
                      epoch_metrics=[AUC(average='micro', task_type='binary'),
                                     MultiLabelReport(id2label=id2label),
                                     F1Score(average='micro', task_type='binary')])

    trainer.model.zero_grad()
    seed_everything(trainer.args.seed)  # Added here for reproductibility (even between python 2 a
    
    iter_num = 0
    valid_dataloader = get_valid_dataloader(args)
    for epoch in range(trainer.start_epoch, trainer.start_epoch + trainer.args.epochs):
        trainer.logger.info(f"Epoch {epoch}/{trainer.args.epochs}")
        update_epoch = True

        for i, data_name in enumerate(data_names):
            filename_int = int(data_name)
            if filename_int > 3500:
                continue
            trainer.logger.info(f"Epoch {epoch} - summary {i+1}/{len(data_names)}"+ f": summary_{data_name}")
            # train_dataloader, valid_dataloader = get_dataloader(args, data_name)
            train_dataloader = get_dataloader(args, data_name)
            # train_log, valid_log = trainer.train(train_data=train_dataloader, valid_data=valid_dataloader, epoch=update_epoch)
            train_log = trainer.train(train_data=train_dataloader, epoch=update_epoch)
            update_epoch = False

            # if train_log == None:
            #     continue
            
            iter_num += 1

            # logs = dict(train_log)
            # show_info = f'\nEpoch: {epoch} - ' + "-".join([f' {key}: {value:.4f} ' for key, value in logs.items()])
            # trainer.logger.info(show_info)


            if iter_num % 50 == 0:
                valid_log = trainer.valid_epoch(valid_dataloader)
                logs = dict(valid_log)
                show_info = f'\nEpoch: {epoch} - ' + "-".join([f' {key}: {value:.4f} ' for key, value in logs.items()])
                trainer.logger.info(show_info)

                # save
                if trainer.training_monitor:
                    trainer.training_monitor.epoch_step(logs)

            # save model
            if trainer.model_checkpoint:
                if iter_num % 50 == 0:
                #     state = trainer.save_info(epoch, best=logs[trainer.model_checkpoint.monitor])
                    state = trainer.save_info(iter_num, best=logs[trainer.model_checkpoint.monitor])
                    trainer.model_checkpoint.bert_epoch_step(current=logs[trainer.model_checkpoint.monitor], state=state)

            # early_stopping
            if trainer.early_stopping:
                trainer.early_stopping.epoch_step(epoch=epoch, current=logs[trainer.early_stopping.monitor])
                if trainer.early_stopping.stop_training:
                    break
def run_train(args):
    # --------- data
    processor = BertProcessor(vocab_path=config['bert_vocab_path'],
                              do_lower_case=args.do_lower_case)
    label_list = processor.get_labels(args.task_type)
    label2id = {label: i for i, label in enumerate(label_list)}
    id2label = {i: label for i, label in enumerate(label_list)}

    train_data = processor.get_train(
        config['data_dir'] / f"{args.data_name}.train.{args.task_type}.pkl")
    train_examples = processor.create_examples(
        lines=train_data,
        example_type=f'train_{args.task_type}',
        cached_examples_file=config['data_dir'] /
        f"cached_train_{args.task_type}_examples_{args.arch}")
    train_features = processor.create_features(
        examples=train_examples,
        max_seq_len=args.train_max_seq_len,
        cached_features_file=config['data_dir'] /
        "cached_train_{}_features_{}_{}".format(
            args.task_type, args.train_max_seq_len, args.arch))
    train_dataset = processor.create_dataset(train_features,
                                             is_sorted=args.sorted)
    if args.sorted:
        train_sampler = SequentialSampler(train_dataset)
    else:
        train_sampler = RandomSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset,
                                  sampler=train_sampler,
                                  batch_size=args.train_batch_size,
                                  collate_fn=collate_fn)

    valid_data = processor.get_dev(
        config['data_dir'] / f"{args.data_name}.valid.{args.task_type}.pkl")
    valid_examples = processor.create_examples(
        lines=valid_data,
        example_type=f'valid_{args.task_type}',
        cached_examples_file=config['data_dir'] /
        f"cached_valid_{args.task_type}_examples_{args.arch}")

    valid_features = processor.create_features(
        examples=valid_examples,
        max_seq_len=args.eval_max_seq_len,
        cached_features_file=config['data_dir'] /
        "cached_valid_{}_features_{}_{}".format(
            args.task_type, args.eval_max_seq_len, args.arch))
    valid_dataset = processor.create_dataset(valid_features)
    valid_sampler = SequentialSampler(valid_dataset)
    valid_dataloader = DataLoader(valid_dataset,
                                  sampler=valid_sampler,
                                  batch_size=args.eval_batch_size,
                                  collate_fn=collate_fn)

    # ------- model
    logger.info("initializing model")
    if args.resume_path:
        args.resume_path = Path(args.resume_path)
        model = BertForMultiLable.from_pretrained(args.resume_path,
                                                  num_labels=len(label_list))
    else:
        if args.task_type == 'trans':
            model = BertForMultiLable_Fewshot.from_pretrained(
                Path('pybert/output/checkpoints/bert/base'),
                num_labels=len(label_list))
            #model = BertForMultiLable.from_pretrained(config['bert_model_dir'], num_labels=len(label_list))
        else:
            model = BertForMultiLable.from_pretrained(
                config['bert_model_dir'], num_labels=len(label_list))
    t_total = int(
        len(train_dataloader) / args.gradient_accumulation_steps * args.epochs)
    # 下面是optimizer和scheduler的设计
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        args.weight_decay
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    warmup_steps = int(t_total * args.warmup_proportion)
    optimizer = AdamW(optimizer_grouped_parameters,
                      lr=args.learning_rate,
                      eps=args.adam_epsilon)
    scheduler = get_linear_schedule_with_warmup(optimizer,
                                                num_warmup_steps=warmup_steps,
                                                num_training_steps=t_total)
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use fp16 training."
            )
        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level=args.fp16_opt_level)
    # ---- callbacks
    logger.info("initializing callbacks")
    train_monitor = TrainingMonitor(
        file_dir=config['figure_dir'], arch=args.arch
    )  # TODO: 理解train_monitor的作用,感觉就是一个用来绘图的东西,用于记录每一个epoch中得到的结果
    model_checkpoint = ModelCheckpoint(checkpoint_dir=config['checkpoint_dir'],
                                       mode=args.mode,
                                       monitor=args.monitor,
                                       arch=args.arch,
                                       save_best_only=args.save_best)

    # **************************** training model ***********************
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_examples))
    logger.info("  Num Epochs = %d", args.epochs)
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size * args.gradient_accumulation_steps *
        (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
    logger.info("  Gradient Accumulation steps = %d",
                args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    trainer = Trainer(
        args=args,
        model=model,
        logger=logger,
        criterion=BCEWithLogLoss(),
        optimizer=optimizer,
        scheduler=scheduler,
        early_stopping=None,
        training_monitor=train_monitor,
        model_checkpoint=model_checkpoint,
        batch_metrics=[
            AccuracyThresh(thresh=0.5)
        ],  # 作用于batch之上的metrics,在每次loss.backward()之后都会执行计算,记得区分它与loss
        epoch_metrics=[
            AUC(average='micro', task_type='binary'),  # 作用于epoch之上的metrics
            MultiLabelReport(id2label=id2label),
            F1Score(task_type='binary', average='micro', search_thresh=True)
        ])  # TODO: 考虑是否应该使用F1-score替代指标
    trainer.train(train_data=train_dataloader, valid_data=valid_dataloader)
def run_test(args):
    # TODO: 对训练集使用micro F1-score进行结果评测
    from pybert.io.task_data import TaskData
    from pybert.test.predictor import Predictor
    data = TaskData()
    ids, targets, sentences = data.read_data(
        raw_data_path=config['test_path'],
        preprocessor=ChinesePreProcessor(),
        is_train=True)  # 设置为True
    lines = list(zip(sentences, targets))
    #print(ids,sentences)
    processor = BertProcessor(vocab_path=config['bert_vocab_path'],
                              do_lower_case=args.do_lower_case)
    label_list = processor.get_labels(args.task_type)
    id2label = {i: label for i, label in enumerate(label_list)}

    test_data = processor.get_test(lines=lines)
    test_examples = processor.create_examples(
        lines=test_data,
        example_type=f'test_{args.task_type}',
        cached_examples_file=config['data_dir'] /
        f"cached_test_{args.task_type}_examples_{args.arch}")
    test_features = processor.create_features(
        examples=test_examples,
        max_seq_len=args.eval_max_seq_len,
        cached_features_file=config['data_dir'] /
        "cached_test_{}_features_{}_{}".format(
            args.task_type, args.eval_max_seq_len, args.arch))
    test_dataset = processor.create_dataset(test_features)
    test_sampler = SequentialSampler(test_dataset)
    test_dataloader = DataLoader(test_dataset,
                                 sampler=test_sampler,
                                 batch_size=args.train_batch_size,
                                 collate_fn=collate_fn)
    model = None
    if args.task_type == 'base':
        model = BertForMultiLable.from_pretrained(config['checkpoint_dir'],
                                                  num_labels=len(label_list))
    else:
        # model = BertForMultiLable.from_pretrained(config['checkpoint_dir'], num_labels=len(label_list))
        model = BertForMultiLable_Fewshot.from_pretrained(
            config['checkpoint_dir'], num_labels=len(label_list))

    # ----------- predicting
    logger.info('model predicting....')
    predictor = Predictor(model=model, logger=logger, n_gpu=args.n_gpu)
    result = predictor.predict(data=test_dataloader)  # 感觉这个变量名叫all_logits可能更好
    # TODO: 计算F1-score,这个功能模块需要用代码测试一下~
    f1_metric = F1Score(task_type='binary',
                        average='micro',
                        search_thresh=True)
    all_logits = torch.tensor(result, dtype=torch.float)  # 转换成tensor
    all_labels = torch.tensor(targets, dtype=torch.long)  # 转换成tensor
    f1_metric(all_logits, all_labels)  # 会自动打印结果
    print(f1_metric.value())
    # 将结果写入一个文件之中
    with open('test_output/test.log', 'a+') as f:
        f.write(str(f1_metric.value()) + "\n")
    thresh = f1_metric.thresh

    ids = np.array(ids)
    df1 = pd.DataFrame(ids, index=None)
    df2 = pd.DataFrame(result, index=None)
    all_df = pd.concat([df1, df2], axis=1)
    if args.task_type == 'base':
        all_df.columns = ['id', 'zy', 'gfgqzr', 'qs', 'tz', 'ggjc']
    else:
        all_df.columns = ['id', 'sg', 'pj', 'zb', 'qsht', 'db']
    for column in all_df.columns[1:]:
        all_df[column] = all_df[column].apply(lambda x: 1 if x > thresh else 0)
    # all_df['zy'] = all_df['zy'].apply(lambda x: 1 if x>thresh else 0)
    # all_df['gfgqzr'] = all_df['gfgqzr'].apply(lambda x: 1 if x>thresh else 0)
    # all_df['qs'] = all_df['qs'].apply(lambda x: 1 if x>thresh else 0)
    # all_df['tz'] = all_df['tz'].apply(lambda x: 1 if x>thresh else 0)
    # all_df['ggjc'] = all_df['ggjc'].apply(lambda x: 1 if x>thresh else 0)
    all_df.to_csv(f"test_output/{args.task_type}/cls_out.csv", index=False)
Example #6
0
def main():
    # **************************** Basic Info  ***********************
    logger = init_logger(log_name=config['arch'], log_dir=config['log_dir'])
    logger.info("seed is %d" % config['seed'])
    device = 'cuda:%d' % config['n_gpus'][0] if len(
        config['n_gpus']) else 'cpu'
    seed_everything(seed=config['seed'], device=device)
    logger.info('starting load data from disk')

    # split the reports
    if config['resume']:
        split_reports = SplitReports(raw_reports_dir=config['raw_reports_dir'],
                                     raw_data_path=config['raw_data_path'])
        split_reports.split()

    df = pd.read_csv(config['raw_data_path'])
    label_list = df.columns.values[2:].tolist()
    config['label_to_id'] = {label: i for i, label in enumerate(label_list)}
    config['id_to_label'] = {i: label for i, label in enumerate(label_list)}
    config['vocab_path'] = path.sep.join(
        [config['bert_model_dir'], 'vocab.txt'])

    # **************************** Data  ***********************
    data_transformer = DataTransformer(logger=logger,
                                       raw_data_path=config['raw_data_path'],
                                       label_to_id=config['label_to_id'],
                                       train_file=config['train_file_path'],
                                       valid_file=config['valid_file_path'],
                                       valid_size=config['valid_size'],
                                       seed=config['seed'],
                                       preprocess=Preprocessor(),
                                       shuffle=config['shuffle'],
                                       skip_header=True,
                                       stratify=False)
    # dataloader and pre-processing
    data_transformer.read_data()

    tokenizer = BertTokenizer(vocab_file=config['vocab_path'],
                              do_lower_case=config['do_lower_case'])

    # train
    train_dataset = CreateDataset(data_path=config['train_file_path'],
                                  tokenizer=tokenizer,
                                  max_seq_len=config['max_seq_len'],
                                  seed=config['seed'],
                                  example_type='train')
    # valid
    valid_dataset = CreateDataset(data_path=config['valid_file_path'],
                                  tokenizer=tokenizer,
                                  max_seq_len=config['max_seq_len'],
                                  seed=config['seed'],
                                  example_type='valid')
    # resume best model
    if config['resume']:
        train_loader = [0]
    else:
        train_loader = DataLoader(dataset=train_dataset,
                                  batch_size=config['batch_size'],
                                  num_workers=config['num_workers'],
                                  shuffle=True,
                                  drop_last=False,
                                  pin_memory=False)
    # valid
    valid_loader = DataLoader(dataset=valid_dataset,
                              batch_size=config['batch_size'],
                              num_workers=config['num_workers'],
                              shuffle=False,
                              drop_last=False,
                              pin_memory=False)

    # **************************** Model  ***********************
    logger.info("initializing model")
    if config['resume']:
        with open(config['lab_dir'], 'r') as f:
            config['label_to_id'] = load(f)

    model = BertFine.from_pretrained(config['bert_model_dir'],
                                     cache_dir=config['cache_dir'],
                                     num_classes=len(config['label_to_id']))

    # ************************** Optimizer  *************************
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    num_train_steps = int(
        len(train_dataset.examples) / config['batch_size'] /
        config['gradient_accumulation_steps'] * config['epochs'])
    # t_total: total number of training steps for the learning rate schedule
    # warmup: portion of t_total for the warmup
    optimizer = BertAdam(optimizer_grouped_parameters,
                         lr=config['learning_rate'],
                         warmup=config['warmup_proportion'],
                         t_total=num_train_steps)

    # **************************** callbacks ***********************
    logger.info("initializing callbacks")
    # save model
    model_checkpoint = ModelCheckpoint(
        checkpoint_dir=config['checkpoint_dir'],
        mode=config['mode'],
        monitor=config['monitor'],
        save_best_only=config['save_best_only'],
        best_model_name=config['best_model_name'],
        epoch_model_name=config['epoch_model_name'],
        arch=config['arch'],
        logger=logger)
    # monitor
    train_monitor = TrainingMonitor(fig_dir=config['figure_dir'],
                                    json_dir=config['log_dir'],
                                    arch=config['arch'])

    # TensorBoard
    start_time = datetime.datetime.now().strftime('%m%d_%H%M%S')
    writer_dir = os.path.join(config['writer_dir'], config['feature-based'],
                              start_time)
    TSBoard = WriterTensorboardX(writer_dir=writer_dir,
                                 logger=logger,
                                 enable=True)
    # learning rate
    lr_scheduler = BertLr(optimizer=optimizer,
                          lr=config['learning_rate'],
                          t_total=num_train_steps,
                          warmup=config['warmup_proportion'])

    # **************************** training model ***********************
    logger.info('training model....')
    trainer = Trainer(model=model,
                      train_data=train_loader,
                      val_data=valid_loader,
                      optimizer=optimizer,
                      epochs=config['epochs'],
                      criterion=BCEWithLogLoss(),
                      logger=logger,
                      model_checkpoint=model_checkpoint,
                      training_monitor=train_monitor,
                      TSBoard=TSBoard,
                      resume=config['resume'],
                      lr_scheduler=lr_scheduler,
                      n_gpu=config['n_gpus'],
                      label_to_id=config['label_to_id'],
                      evaluate_auc=AUC(sigmoid=True),
                      evaluate_f1=F1Score(sigmoid=True),
                      incorrect=Incorrect(sigmoid=True))

    trainer.summary()
    trainer.train()

    # release cache
    if len(config['n_gpus']) > 0:
        torch.cuda.empty_cache()
def main():
    # **************************** 基础信息 ***********************
    logger = init_logger(log_name=config['arch'], log_dir=config['log_dir'])
    logger.info("seed is %d" % config['seed'])
    device = 'cuda:%d' % config['n_gpus'][0] if len(
        config['n_gpus']) else 'cpu'
    seed_everything(seed=config['seed'], device=device)
    logger.info('starting load data from disk')
    config['id_to_label'] = {v: k for k, v in config['label_to_id'].items()}
    # **************************** 数据生成 ***********************
    data_transformer = DataTransformer(logger=logger,
                                       label_to_id=config['label_to_id'],
                                       train_file=config['train_file_path'],
                                       valid_file=config['valid_file_path'],
                                       valid_size=config['valid_size'],
                                       seed=config['seed'],
                                       shuffle=True,
                                       skip_header=False,
                                       preprocess=None,
                                       raw_data_path=config['raw_data_path'])
    # 读取数据集以及数据划分
    data_transformer.read_data()
    # train
    train_dataset = CreateDataset(data_path=config['train_file_path'],
                                  vocab_path=config['vocab_path'],
                                  max_seq_len=config['max_seq_len'],
                                  seed=config['seed'],
                                  example_type='train')
    # valid
    valid_dataset = CreateDataset(data_path=config['valid_file_path'],
                                  vocab_path=config['vocab_path'],
                                  max_seq_len=config['max_seq_len'],
                                  seed=config['seed'],
                                  example_type='valid')
    #加载训练数据集
    train_loader = DataLoader(dataset=train_dataset,
                              batch_size=config['batch_size'],
                              num_workers=config['num_workers'],
                              shuffle=True,
                              drop_last=False,
                              pin_memory=False)
    # 验证数据集
    valid_loader = DataLoader(dataset=valid_dataset,
                              batch_size=config['batch_size'],
                              num_workers=config['num_workers'],
                              shuffle=False,
                              drop_last=False,
                              pin_memory=False)

    # **************************** 模型 ***********************
    logger.info("initializing model")
    model = BertFine.from_pretrained(config['bert_model_dir'],
                                     cache_dir=config['cache_dir'],
                                     num_classes=len(config['label_to_id']))

    # ************************** 优化器 *************************
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    num_train_steps = int(
        len(train_dataset.examples) / config['batch_size'] /
        config['gradient_accumulation_steps'] * config['epochs'])
    # t_total: total number of training steps for the learning rate schedule
    # warmup: portion of t_total for the warmup
    optimizer = BertAdam(optimizer_grouped_parameters,
                         lr=config['learning_rate'],
                         warmup=config['warmup_proportion'],
                         t_total=num_train_steps)

    # **************************** callbacks ***********************
    logger.info("initializing callbacks")
    # 模型保存
    model_checkpoint = ModelCheckpoint(
        checkpoint_dir=config['checkpoint_dir'],
        mode=config['mode'],
        monitor=config['monitor'],
        save_best_only=config['save_best_only'],
        best_model_name=config['best_model_name'],
        epoch_model_name=config['epoch_model_name'],
        arch=config['arch'],
        logger=logger)
    # 监控训练过程
    train_monitor = TrainingMonitor(fig_dir=config['figure_dir'],
                                    json_dir=config['log_dir'],
                                    arch=config['arch'])
    # 学习率机制
    lr_scheduler = BertLr(optimizer=optimizer,
                          lr=config['learning_rate'],
                          t_total=num_train_steps,
                          warmup=config['warmup_proportion'])

    # **************************** training model ***********************
    logger.info('training model....')
    trainer = Trainer(model=model,
                      train_data=train_loader,
                      val_data=valid_loader,
                      optimizer=optimizer,
                      epochs=config['epochs'],
                      criterion=CrossEntropy(),
                      logger=logger,
                      model_checkpoint=model_checkpoint,
                      training_monitor=train_monitor,
                      resume=config['resume'],
                      lr_scheduler=lr_scheduler,
                      n_gpu=config['n_gpus'],
                      evaluate=F1Score(),
                      class_report=ClassReport(target_names=[
                          config['id_to_label'][x]
                          for x in range(len(config['label_to_id']))
                      ]))
    # 查看模型结构
    trainer.summary()
    # 拟合模型
    trainer.train()
    # 释放显存
    if len(config['n_gpus']) > 0:
        torch.cuda.empty_cache()