Example #1
0
    def factory(v1, v2, energy=np.linspace(0, 0.1, 10)):
        model = pb.Model(graphene.monolayer(),
                         graphene.hexagon_ac(side_width=15),
                         pb.constant_potential(v1), pb.constant_potential(v2))

        kpm = pb.greens.kpm(model)
        return kpm.deferred_ldos(energy, broadening=0.15, position=[0, 0])
Example #2
0
    def factory(v1, v2, energy=np.linspace(0, 0.1, 10)):
        model = pb.Model(
            graphene.monolayer(),
            graphene.hexagon_ac(side_width=15),
            pb.constant_potential(v1),
            pb.constant_potential(v2)
        )

        kpm = pb.greens.kpm(model)
        return kpm.deferred_ldos(energy, broadening=0.15, position=[0, 0])
Example #3
0
    def factory(v, energy=np.linspace(0, 0.1, 10)):
        model = pb.Model(graphene.monolayer(),
                         graphene.hexagon_ac(side_width=15),
                         pb.constant_potential(v))

        kpm = pb.kpm(model, kernel=pb.lorentz_kernel())
        return kpm.deferred_ldos(energy,
                                 broadening=0.15,
                                 position=[0, 0],
                                 sublattice="B")
Example #4
0
import pytest
import numpy as np

import pybinding as pb
from pybinding.repository import graphene

models = {
    'graphene-pristine': [graphene.monolayer(), pb.rectangle(15)],
    'graphene-pristine-oversized': [graphene.monolayer(), pb.rectangle(20)],
    'graphene-const_potential': [graphene.monolayer(), pb.rectangle(15),
                                 pb.constant_potential(0.5)],
    'graphene-magnetic_field': [graphene.monolayer(), pb.rectangle(15),
                                graphene.constant_magnetic_field(1e3)],
}


@pytest.fixture(scope='module', ids=list(models.keys()), params=models.values())
def model(request):
    return pb.Model(*request.param)


@pytest.fixture(scope='module')
def kpm(model):
    return [pb.greens.kpm(model, optimization_level=i) for i in range(4)]


def test_ldos(kpm, baseline, plot_if_fails):
    energy = np.linspace(0, 2, 25)
    results = [k.calc_ldos(energy, broadening=0.15, position=(0, 0)) for k in kpm]

    expected = pb.results.LDOS(energy, baseline(results[0].ldos.astype(np.float32)))
Example #5
0
import pytest
import numpy as np

import pybinding as pb
from pybinding.repository import graphene

models = {
    'graphene-pristine': [graphene.monolayer(),
                          pb.rectangle(15)],
    'graphene-pristine-oversized': [graphene.monolayer(),
                                    pb.rectangle(20)],
    'graphene-const_potential':
    [graphene.monolayer(),
     pb.rectangle(15),
     pb.constant_potential(0.5)],
    'graphene-magnetic_field': [
        graphene.monolayer(),
        pb.rectangle(15),
        graphene.constant_magnetic_field(1e3)
    ],
}


@pytest.fixture(scope='module',
                ids=list(models.keys()),
                params=models.values())
def model(request):
    return pb.Model(*request.param)


@pytest.fixture(scope='module')