def run_pc_rcot_gbn(result_folder, idx_fold): fold_folder = result_folder + '/PC/Gaussian/RCoT/' + str(idx_fold) pathlib.Path(fold_folder).mkdir(parents=True, exist_ok=True) pdag = load(result_folder + '/PC/graph-rcot-' + str(idx_fold) + ".pickle") try: dag = pdag.to_dag() except ValueError: dag = pdag.to_approximate_dag() gbn = GaussianNetwork(dag) gbn.save(fold_folder + "/000000")
def train_gbn(dataset, instances): df = pd.read_csv(dataset + "_" + str(instances) + '.csv') hc = GreedyHillClimbing() arc_set = ArcOperatorSet() result_folder = 'models/' + dataset + '/' + str( instances) + '/HillClimbing/GBN_BIC/' pathlib.Path(result_folder).mkdir(parents=True, exist_ok=True) if not os.path.exists(result_folder + '/end.lock'): bic = BIC(df) cb_save = SaveModel(result_folder) start_model = GaussianNetwork(list(df.columns.values)) bn = hc.estimate(arc_set, bic, start_model, callback=cb_save) iters = sorted(glob.glob(result_folder + '/*.pickle')) last_file = os.path.basename(iters[-1]) number = int(os.path.splitext(last_file)[0]) bn.save(result_folder + '/' + str(number + 1).zfill(6) + ".pickle") with open(result_folder + '/end.lock', 'w') as f: pass hc = GreedyHillClimbing() arc_set = ArcOperatorSet() result_folder = 'models/' + dataset + '/' + str( instances) + '/HillClimbing/GBN_BGe/' pathlib.Path(result_folder).mkdir(parents=True, exist_ok=True) if not os.path.exists(result_folder + '/end.lock'): bge = BGe(df) cb_save = SaveModel(result_folder) start_model = GaussianNetwork(list(df.columns.values)) bn = hc.estimate(arc_set, bge, start_model, callback=cb_save) iters = sorted(glob.glob(result_folder + '/*.pickle')) last_file = os.path.basename(iters[-1]) number = int(os.path.splitext(last_file)[0]) bn.save(result_folder + '/' + str(number + 1).zfill(6) + ".pickle") with open(result_folder + '/end.lock', 'w') as f: pass
def run_bge_gaussian(train_data, result_folder, idx_fold): fold_folder = result_folder + '/HillClimbing/Gaussian/BGe/' + str(idx_fold) pathlib.Path(fold_folder).mkdir(parents=True, exist_ok=True) if os.path.exists(fold_folder + '/end.lock'): return hc = GreedyHillClimbing() arc_set = ArcOperatorSet() bge = BGe(train_data) cb_save = SaveModel(fold_folder) start_model = GaussianNetwork(list(train_data.columns.values)) bn = hc.estimate(arc_set, bge, start_model, callback=cb_save, verbose=True) iters = sorted(glob.glob(fold_folder + '/*.pickle')) last_file = os.path.basename(iters[-1]) number = int(os.path.splitext(last_file)[0]) bn.save(fold_folder + '/' + str(number+1).zfill(6) + ".pickle") with open(fold_folder + '/end.lock', 'w') as f: pass
def run_validation_gaussian(train_data, folds, patience, result_folder, idx_fold): hc = GreedyHillClimbing() arc_set = ArcOperatorSet() for k in folds: vl = ValidatedLikelihood(train_data, k=k, seed=0) for p in patience: fold_folder = result_folder + '/HillClimbing/Gaussian/Validation_' + str(k) + '_' + str(p) + '/' + str(idx_fold) pathlib.Path(fold_folder).mkdir(parents=True, exist_ok=True) if os.path.exists(fold_folder + '/end.lock'): continue cb_save = SaveModel(fold_folder) start_model = GaussianNetwork(list(train_data.columns.values)) bn = hc.estimate(arc_set, vl, start_model, callback=cb_save, patience=p, verbose=True) iters = sorted(glob.glob(fold_folder + '/*.pickle')) last_file = os.path.basename(iters[-1]) number = int(os.path.splitext(last_file)[0]) bn.save(fold_folder + '/' + str(number+1).zfill(6) + ".pickle") with open(fold_folder + '/end.lock', 'w') as f: pass
patience = experiments_helper.PATIENCE small_results = pd.DataFrame() medium_results = pd.DataFrame() large_results = pd.DataFrame() for n in experiments_helper.INSTANCES: df = pd.read_csv('data/small_' + str(n) + ".csv") executions = np.empty((20000,)) for i in range(20000): if i % 10 == 0: print(str(i) + " executions") bic = BIC(df) start_model = GaussianNetwork(list(df.columns.values)) hc = GreedyHillClimbing() arcs = ArcOperatorSet() start = time.time() bn = hc.estimate(arcs, bic, start_model) end = time.time() executions[i] = end - start small_results['GBN_BIC_' + str(n)] = pd.Series(executions, name="GBN_BIC_" + str(n)) print("Small " + str(n) + " -- Time: " + str(executions.mean()) + ", std: " + str(np.std(executions, ddof=1))) df = pd.read_csv('data/medium_' + str(n) + ".csv") executions = np.empty((20000,))
for d in experiments_helper.DATASETS: for i in experiments_helper.INSTANCES: df = pd.read_csv(d + "_" + str(i) + '.csv') pdag_lc = load('models/' + d + '/' + str(i) + '/PC/graph-lc.pickle') try: dag_lc = pdag_lc.to_dag() except ValueError: dag_lc = pdag_lc.to_approximate_dag() result_folder = 'models/' + d + '/' + str( i) + '/PC/GBN/LinearCorrelation' pathlib.Path(result_folder).mkdir(parents=True, exist_ok=True) gbn_lc = GaussianNetwork(dag_lc) gbn_lc.save(result_folder + '/000000') pdag_rcot = load('models/' + d + '/' + str(i) + '/PC/graph-rcot.pickle') try: dag_rcot = pdag_rcot.to_dag() except ValueError: dag_rcot = pdag_rcot.to_approximate_dag() result_folder = 'models/' + d + '/' + str(i) + '/PC/GBN/RCoT' pathlib.Path(result_folder).mkdir(parents=True, exist_ok=True) gbn_rcot = GaussianNetwork(dag_rcot) gbn_rcot.save(result_folder + '/000000')