values[i] = num_replications2[subset][j]
        i = i+1
        repl_counts.append(num_replications2[subset][j])
        
        for l in range(num_replications2[subset][j]):
            
            # fill dummy var
            values[i] = 45678.
            i = i+1

# debug
print('values[:10]: ', values[:10].tolist()) #numpy.where(values != 0)]))
print('values[-10:]: ', values[-10:].tolist()) #numpy.where(values != 0)]))

# do the encoding to binary format
bufr.kdata = numpy.array(repl_counts)
print('bufr.kdata = ', bufr.kdata.tolist())
bufr.encode_data(values, cvals)

# get an instance of the RawBUFRFile class
bf1 = RawBUFRFile()

output_bufr_file = 'dummy_bufr_file.bfr'
# open the file for writing
bf1.open(output_bufr_file, 'wb')
# write the encoded BUFR message
bf1.write_raw_bufr_msg(bufr.encoded_message)
# close the file
bf1.close()

##############################
def create_bufr_file(output_bufr_file, template):
    #  #[ create bufr file
    '''
    and use this BUFR template to create a test BUFR message
    '''
    from pybufr_ecmwf.bufr_interface_ecmwf import BUFRInterfaceECMWF
    bufr = BUFRInterfaceECMWF(verbose=True)

    # fill sections 0, 1, 2 and 3
    num_subsets = 2
    bufr.fill_sections_0123(bufr_code_centre=98, # ECMWF
                            bufr_obstype=3, # sounding
                            bufr_subtype=253, # L2B
                            bufr_table_local_version=1,
                            bufr_table_master=0,
                            bufr_table_master_version=15,
                            bufr_code_subcentre=0, # L2B processing facility
                            num_subsets=num_subsets,
                            bufr_compression_flag=0)
                            # 64=compression/0=no compression

    # determine information from sections 0123 to construct the BUFR table
    # names expected by the ECMWF BUFR library and create symlinks to the
    # default tables if needed
    bufr.setup_tables(table_b_to_use='B'+TABLE_NAME,
                      table_d_to_use='D'+TABLE_NAME)
    bufr.register_and_expand_descriptors(template)

    # activate this one if the encoding crashes without clear cause:
    # bufr.estimated_num_bytes_for_encoding = 25000

    # retrieve the length of the expanded descriptor list
    exp_descr_list_length = bufr.ktdexl
    print "exp_descr_list_length = ", exp_descr_list_length

    # fill the values array with some dummy varying data
    num_values = num_subsets*bufr.max_nr_expanded_descriptors
    values = numpy.zeros(num_values, dtype=numpy.float64) # this is the default

    # note: these two must be identical for now, otherwise the
    # python to fortran interface breaks down. This also ofcourse is the
    # cause of the huge memory use of cvals in case num_values is large.
    num_cvalues = num_values
    cvals = numpy.zeros((num_cvalues, 80), dtype=numpy.character)
    cvals_index = 0

    repl_counts = []

    for subset in range(num_subsets):
        # note that python starts counting with 0, unlike fortran,
        # so there is no need to take (subset-1)

        print 'subset,exp_descr_list_length = ', subset, exp_descr_list_length
        i = subset*exp_descr_list_length

        # fill the message with some dummy data

        # fill year, month, day
        for val in [2014, 3, 19]: # fill the header
            values[i] = val+subset
            i += 1

        # fill prod_name
        txt = 'filename{}.txt'.format(subset)
        cvals[cvals_index, :] = ' '
        for icval, cval in enumerate(txt):
            cvals[cvals_index, icval] = cval

        # values[i] = cvals_index * 1000 + 64 # len(txt)
        values[i] = (cvals_index+1) * 1000 + len(txt)
        i += 1
        cvals_index = cvals_index + 1

        for val in [5.1+0.1*subset, 55.2-0.01*subset, 23., 45., 73., 82.]:
            bufr.verify_in_range(i, val)
            values[i] = val
            i += 1

        if USE_DELAYED_REPLICATION:
            # set actual delayed replication repeats
            num_repl = 3 + 2*subset
            print 'num_repl = ', num_repl
            values[i] = num_repl
            i += 1
            repl_counts.append(num_repl)

            # fill the replicated variable
            for irepl in range(num_repl):
                val = 12.+subset*0.1 + irepl*0.01
                bufr.verify_in_range(i, val)
                values[i] = val
                i += 1

    # do the encoding to binary format
    bufr.kdata = numpy.array(repl_counts)
    print 'bufr.kdata = ', bufr.kdata
    bufr.encode_data(values, cvals)

    print 'DEBUG: values = ', values

    from pybufr_ecmwf.raw_bufr_file import RawBUFRFile
    # get an instance of the RawBUFRFile class
    bf1 = RawBUFRFile()

    # open the file for writing
    bf1.open(output_bufr_file, 'wb')
    # write the encoded BUFR message
    bf1.write_raw_bufr_msg(bufr.encoded_message)
    # close the file
    bf1.close()
Example #3
0
        # set actual delayed replication number
        values[i] = num_replications2[subset][j]
        i = i + 1
        repl_counts.append(num_replications2[subset][j])

        for l in range(num_replications2[subset][j]):

            # fill dummy var
            values[i] = 45678.
            i = i + 1

# debug
print('values: ', list(values))  #numpy.where(values != 0)]))

# do the encoding to binary format
bufr.kdata = numpy.array(repl_counts)
print('bufr.kdata = ', bufr.kdata)
bufr.encode_data(values, cvals)

# get an instance of the RawBUFRFile class
bf1 = RawBUFRFile()

output_bufr_file = 'dummy_bufr_file.bfr'
# open the file for writing
bf1.open(output_bufr_file, 'wb')
# write the encoded BUFR message
bf1.write_raw_bufr_msg(bufr.encoded_message)
# close the file
bf1.close()

##############################
Example #4
0
def create_bufr_file(output_bufr_file, template):
    #  #[ create bufr file
    '''
    and use this BUFR template to create a test BUFR message
    '''
    from pybufr_ecmwf.bufr_interface_ecmwf import BUFRInterfaceECMWF
    bufr = BUFRInterfaceECMWF(verbose=True)

    # fill sections 0, 1, 2 and 3
    num_subsets = 2
    bufr.fill_sections_0123(bufr_code_centre=98, # ECMWF
                            bufr_obstype=3, # sounding
                            bufr_subtype=253, # L2B
                            bufr_table_local_version=1,
                            bufr_table_master=0,
                            bufr_table_master_version=15,
                            bufr_code_subcentre=0, # L2B processing facility
                            num_subsets=num_subsets,
                            bufr_compression_flag=0)
                            # 64=compression/0=no compression

    # determine information from sections 0123 to construct the BUFR table
    # names expected by the ECMWF BUFR library and create symlinks to the
    # default tables if needed
    bufr.setup_tables(table_b_to_use='B'+TABLE_NAME,
                      table_d_to_use='D'+TABLE_NAME)
    bufr.register_and_expand_descriptors(template)

    # activate this one if the encoding crashes without clear cause:
    # bufr.estimated_num_bytes_for_encoding = 25000

    # retrieve the length of the expanded descriptor list
    exp_descr_list_length = bufr.ktdexl
    print "exp_descr_list_length = ", exp_descr_list_length

    # fill the values array with some dummy varying data
    num_values = num_subsets*bufr.max_nr_expanded_descriptors
    values = numpy.zeros(num_values, dtype=numpy.float64) # this is the default

    # note: these two must be identical for now, otherwise the
    # python to fortran interface breaks down. This also ofcourse is the
    # cause of the huge memory use of cvals in case num_values is large.
    num_cvalues = num_values
    cvals = numpy.zeros((num_cvalues, 80), dtype=numpy.character)
    cvals_index = 0

    repl_counts = []

    for subset in range(num_subsets):
        # note that python starts counting with 0, unlike fortran,
        # so there is no need to take (subset-1)

        print 'subset,exp_descr_list_length = ', subset, exp_descr_list_length
        i = subset*exp_descr_list_length

        # fill the message with some dummy data

        # fill year, month, day
        for val in [2014, 3, 19]: # fill the header
            values[i] = val+subset
            i += 1

        # fill prod_name
        # this is not python2.6 compatible
        #txt = 'filename{}.txt'.format(subset)
        txt = 'filename'+str(subset)+'.txt'
        cvals[cvals_index, :] = ' '
        for icval, cval in enumerate(txt):
            cvals[cvals_index, icval] = cval

        # values[i] = cvals_index * 1000 + 64 # len(txt)
        values[i] = (cvals_index+1) * 1000 + len(txt)
        i += 1
        cvals_index = cvals_index + 1

        for val in [5.1+0.1*subset, 55.2-0.01*subset, 23., 45., 73., 82.]:
            bufr.verify_in_range(i, val)
            values[i] = val
            i += 1

        if USE_DELAYED_REPLICATION:
            # set actual delayed replication repeats
            num_repl = 3 + 2*subset
            print 'num_repl = ', num_repl
            values[i] = num_repl
            i += 1
            repl_counts.append(num_repl)

            # fill the replicated variable
            for irepl in range(num_repl):
                val = 12.+subset*0.1 + irepl*0.01
                bufr.verify_in_range(i, val)
                values[i] = val
                i += 1

    # do the encoding to binary format
    bufr.kdata = numpy.array(repl_counts)
    print 'bufr.kdata = ', bufr.kdata
    bufr.encode_data(values, cvals)

    print 'DEBUG: values = ', values

    from pybufr_ecmwf.raw_bufr_file import RawBUFRFile
    # get an instance of the RawBUFRFile class
    bf1 = RawBUFRFile()

    # open the file for writing
    bf1.open(output_bufr_file, 'wb')
    # write the encoded BUFR message
    bf1.write_raw_bufr_msg(bufr.encoded_message)
    # close the file
    bf1.close()