def _initialize_ik(self, urdf_path): if not USE_TRACK_IK: self.ik_solver = None return from trac_ik_python.trac_ik import IK # killall -9 rosmaster base_link = get_link_name( self.robot, parent_link_from_joint(self.robot, self.arm_joints[0])) tip_link = get_link_name(self.robot, child_link_from_joint(self.arm_joints[-1])) # limit effort and velocities are required # solve_type: Speed, Distance, Manipulation1, Manipulation2 # TODO: fast solver and slow solver self.ik_solver = IK(base_link=str(base_link), tip_link=str(tip_link), timeout=0.01, epsilon=1e-5, solve_type="Speed", urdf_string=read(urdf_path)) if not CONSERVITIVE_LIMITS: return lower, upper = self.ik_solver.get_joint_limits() buffer = JOINT_LIMITS_BUFFER * np.ones(len(self.ik_solver.joint_names)) lower, upper = lower + buffer, upper - buffer lower[6] = -MAX_FRANKA_JOINT7 upper[6] = +MAX_FRANKA_JOINT7 self.ik_solver.set_joint_limits(lower, upper)
def get_surface_obstacles(world, surface_name): surface = surface_from_name(surface_name) obstacles = set() for joint_name in surface.joints: link = child_link_from_joint(joint_from_name(world.kitchen, joint_name)) obstacles.update(get_descendant_obstacles(world.kitchen, link)) # Be careful to call this before each check open_surface_joints(world, surface_name, joint_names=CABINET_JOINTS) return obstacles
def parse_fluents(world, fluents): obstacles = set() for fluent in fluents: predicate, args = fluent[0], fluent[1:] if predicate in {p.lower() for p in ['AtBConf', 'AtAConf', 'AtGConf']}: q, = args q.assign() elif predicate == 'AtAngle'.lower(): j, a = args a.assign() link = child_link_from_joint(a.joints[0]) obstacles.update(get_descendant_obstacles(a.body, link)) elif predicate in 'AtWorldPose'.lower(): # TODO: conditional effects are not being correctly updated in pddlstream #b, p = args #if isinstance(p, SurfaceDist): # continue #p.assign() #obstacles.update(get_link_obstacles(world, b)) raise RuntimeError() elif predicate in 'AtRelPose'.lower(): pass elif predicate == 'AtGrasp'.lower(): pass else: raise NotImplementedError(predicate) attachments = [] for fluent in fluents: predicate, args = fluent[0], fluent[1:] if predicate in {p.lower() for p in ['AtBConf', 'AtAConf', 'AtGConf']}: pass elif predicate == 'AtAngle'.lower(): pass elif predicate in 'AtWorldPose'.lower(): raise RuntimeError() elif predicate in 'AtRelPose'.lower(): o1, rp, o2 = args if isinstance(rp, SurfaceDist): continue rp.assign() obstacles.update(get_link_obstacles(world, o1)) elif predicate == 'AtGrasp'.lower(): o, g = args if o is not None: attachments.append(g.get_attachment()) attachments[-1].assign() else: raise NotImplementedError(predicate) return attachments, obstacles
def test(at, o, wp): if not collisions: return True # TODO: check door collisions # TODO: still need to check static links at least once if isinstance(wp, SurfaceDist): return True # TODO: perform this probabilistically wp.assign() state = at.context.copy() state.assign() all_bodies = { body for command in at.commands for body in command.bodies } for command in at.commands: obstacles = get_link_obstacles(world, o) - all_bodies # TODO: why did I previously remove o at p? #obstacles = get_link_obstacles(world, o) - command.bodies # - p.bodies # Doesn't include o at p if not obstacles: continue if isinstance(command, DoorTrajectory): [door_joint] = command.door_joints surface_name = get_link_name(world.kitchen, child_link_from_joint(door_joint)) if wp.support == surface_name: return True for _ in command.iterate(state): state.derive() #for attachment in state.attachments.values(): # if any(pairwise_collision(attachment.child, obst) for obst in obstacles): # return False # TODO: just check collisions with moving links if any( pairwise_collision(world.robot, obst) for obst in obstacles): #print(at, o, p) #wait_for_user() return False return True
def main(use_turtlebot=True): parser = argparse.ArgumentParser() parser.add_argument('-sim', action='store_true') parser.add_argument('-video', action='store_true') args = parser.parse_args() video = 'video.mp4' if args.video else None connect(use_gui=True, mp4=video) #set_renderer(enable=False) # print(list_pybullet_data()) # print(list_pybullet_robots()) draw_global_system() set_camera_pose(camera_point=Point(+1.5, -1.5, +1.5), target_point=Point(-1.5, +1.5, 0)) plane = load_plane() #door = load_pybullet('models/door.urdf', fixed_base=True) # From drake #set_point(door, Point(z=-.1)) door = create_door() #set_position(door, z=base_aligned_z(door)) set_point(door, base_aligned(door)) #set_collision_margin(door, link=0, margin=0.) set_configuration(door, [math.radians(-5)]) dump_body(door) door_joint = get_movable_joints(door)[0] door_link = child_link_from_joint(door_joint) #draw_pose(get_com_pose(door, door_link), parent=door, parent_link=door_link) draw_pose(Pose(), parent=door, parent_link=door_link) wait_if_gui() ########## start_x = +2 target_x = -start_x if not use_turtlebot: side = 0.25 robot = create_box(w=side, l=side, h=side, mass=5., color=BLUE) set_position(robot, x=start_x) #set_velocity(robot, linear=Point(x=-1)) else: turtlebot_urdf = os.path.abspath(TURTLEBOT_URDF) print(turtlebot_urdf) #print(read(turtlebot_urdf)) robot = load_pybullet(turtlebot_urdf, merge=True, fixed_base=True) robot_joints = get_movable_joints(robot)[:3] set_joint_positions(robot, robot_joints, [start_x, 0, PI]) set_all_color(robot, BLUE) set_position(robot, z=base_aligned_z(robot)) dump_body(robot) ########## set_renderer(enable=True) #test_door(door) if args.sim: test_simulation(robot, target_x, video) else: assert use_turtlebot # TODO: extend to the block test_kinematic(robot, door, target_x) disconnect()
def solve_collision_free(door, obstacle, max_iterations=100, step_size=math.radians(5), min_distance=2e-2, draw=True): joints = get_movable_joints(door) door_link = child_link_from_joint(joints[-1]) # print(get_com_pose(door, door_link)) # print(get_link_inertial_pose(door, door_link)) # print(get_link_pose(door, door_link)) # draw_pose(get_com_pose(door, door_link)) handles = [] success = False start_time = time.time() for iteration in range(max_iterations): current_conf = np.array(get_joint_positions(door, joints)) collision_infos = get_closest_points(door, obstacle, link1=door_link, max_distance=min_distance) if not collision_infos: success = True break collision_infos = sorted(collision_infos, key=lambda info: info.contactDistance) collision_infos = collision_infos[:1] # TODO: average all these if draw: for collision_info in collision_infos: handles.extend(draw_collision_info(collision_info)) wait_if_gui() [collision_info] = collision_infos[:1] distance = collision_info.contactDistance print( 'Iteration: {} | Collisions: {} | Distance: {:.3f} | Time: {:.3f}'. format(iteration, len(collision_infos), distance, elapsed_time(start_time))) if distance >= min_distance: success = True break # TODO: convergence or decay in step size direction = step_size * get_unit_vector( collision_info.contactNormalOnB) # B->A (already normalized) contact_point = collision_info.positionOnA #com_pose = get_com_pose(door, door_link) # TODO: be careful here com_pose = get_link_pose(door, door_link) local_point = tform_point(invert(com_pose), contact_point) #local_point = unit_point() translate, rotate = compute_jacobian(door, door_link, point=local_point) delta_conf = np.array([ np.dot(translate[mj], direction) # + np.dot(rotate[mj], direction) for mj in movable_from_joints(door, joints) ]) new_conf = current_conf + delta_conf if violates_limits(door, joints, new_conf): break set_joint_positions(door, joints, new_conf) if draw: wait_if_gui() remove_handles(handles) print('Success: {} | Iteration: {} | Time: {:.3f}'.format( success, iteration, elapsed_time(start_time))) #quit() return success
def base_link(self): return child_link_from_joint(self.base_joints[-1])
def pdddlstream_from_problem(belief, additional_init=[], fixed_base=True, **kwargs): world = belief.world # One world per state task = world.task # One task per world print(task) domain_pddl = read(get_file_path(__file__, '../pddl/domain.pddl')) # TODO: repackage stream outputs to avoid recomputation # Despite the base not moving, it could be re-estimated init_bq = belief.base_conf init_aq = belief.arm_conf init_gq = belief.gripper_conf carry_aq = world.carry_conf init_aq = carry_aq if are_confs_close(init_aq, carry_aq) else init_aq # TODO: the following doesn't work. Maybe because carry_conf is used elsewhere #carry_aq = init_aq if are_confs_close(init_aq, world.carry_conf) else world.carry_conf #calibrate_aq = init_aq if are_confs_close(init_aq, world.calibrate_conf) else world.calibrate_conf # Don't need this now that returning to old confs #open_gq = init_gq if are_confs_close(init_gq, world.open_gq) else world.open_gq #closed_gq = init_gq if are_confs_close(init_gq, world.closed_gq) else world.closed_gq open_gq = world.open_gq closed_gq = world.closed_gq constant_map = { '@world': 'world', '@gripper': 'gripper', '@stove': 'stove', '@none': None, '@rest_aq': carry_aq, #'@calibrate_aq': calibrate_aq, '@open_gq': open_gq, '@closed_gq': closed_gq, '@open': OPEN, '@closed': CLOSED, '@top': TOP_GRASP, '@side': SIDE_GRASP, '@bq0': init_bq, } top_joint = JOINT_TEMPLATE.format(TOP_DRAWER) bottom_joint = JOINT_TEMPLATE.format(BOTTOM_DRAWER) init = [ ('BConf', init_bq), ('AtBConf', init_bq), ('AConf', init_bq, carry_aq), #('RestAConf', carry_aq), #('AConf', init_bq, calibrate_aq), ( 'Stationary', ), ('AConf', init_bq, init_aq), ('AtAConf', init_aq), ('GConf', open_gq), ('GConf', closed_gq), ('Grasp', None, None), ('AtGrasp', None, None), ('Above', top_joint, bottom_joint), ('Adjacent', top_joint, bottom_joint), ('Adjacent', bottom_joint, top_joint), ('Calibrated', ), ('CanMoveBase', ), ('CanMoveArm', ), ('CanMoveGripper', ), ] + list(task.init) + list(additional_init) for action_name, cost in ACTION_COSTS.items(): function_name = '{}Cost'.format(title_from_snake(action_name)) function = (function_name, ) init.append(Equal(function, cost)) # TODO: stove state init += [('Stackable', name, surface) for name, surface in task.goal_on.items()] + \ [('Stackable', name, stove) for name, stove in product(task.goal_cooked, STOVES)] + \ [('Pressed', name) for name in belief.pressed] + \ [('Cookable', name) for name in task.goal_cooked] + \ [('Cooked', name) for name in belief.cooked] + \ [('Status', status) for status in DOOR_STATUSES] + \ [('Knob', knob) for knob in KNOBS] + \ [('Joint', knob) for knob in KNOBS] + \ [('Liquid', liquid) for _, liquid in task.init_liquid] + \ [('HasLiquid', cup, liquid) for cup, liquid in belief.liquid] + \ [('StoveKnob', STOVE_TEMPLATE.format(loc), KNOB_TEMPLATE.format(loc)) for loc in STOVE_LOCATIONS] + \ [('GraspType', ty) for ty in task.grasp_types] # TODO: grasp_type per object #[('Type', obj_name, 'stove') for obj_name in STOVES] + \ #[('Camera', name) for name in world.cameras] if task.movable_base: init.append(('MovableBase', )) if fixed_base: init.append(('InitBConf', init_bq)) if task.noisy_base: init.append(('NoisyBase', )) compute_pose_kin = get_compute_pose_kin(world) compute_angle_kin = get_compute_angle_kin(world) initial_poses = {} for joint_name, init_conf in belief.door_confs.items(): if joint_name in DRAWER_JOINTS: init.append(('Drawer', joint_name)) if joint_name in CABINET_JOINTS: init.append(('Cabinet', joint_name)) joint = joint_from_name(world.kitchen, joint_name) surface_name = surface_from_joint(joint_name) init.append(('SurfaceJoint', surface_name, joint_name)) # Relies on the fact that drawers have identical surface and link names link_name = get_link_name(world.kitchen, child_link_from_joint(joint)) #link_name = str(link_name.decode('UTF-8')) #link_name = str(link_name.encode('ascii','ignore')) for conf in { init_conf, world.open_kitchen_confs[joint], world.closed_kitchen_confs[joint] }: # TODO: return to initial poses? world_pose, = compute_angle_kin(link_name, joint_name, conf) init.extend([ ('Joint', joint_name), ('Angle', joint_name, conf), ('Obstacle', link_name), ('AngleKin', link_name, world_pose, joint_name, conf), ('WorldPose', link_name, world_pose), ]) if joint in world.kitchen_joints: init.extend([ ('Sample', world_pose), #('Value', world_pose), # comment out? ]) if conf == init_conf: initial_poses[link_name] = world_pose init.extend([ ('AtAngle', joint_name, conf), ('AtWorldPose', link_name, world_pose), ]) for surface_name in ALL_SURFACES: if surface_name in OPEN_SURFACES: init.append(('Counter', surface_name)) # Fixed surface if surface_name in DRAWERS: init.append(('Drawer', surface_name)) surface = surface_from_name(surface_name) surface_link = link_from_name(world.kitchen, surface.link) parent_joint = parent_joint_from_link(surface_link) if parent_joint not in world.kitchen_joints: # TODO: attach to world frame? world_pose = RelPose(world.kitchen, surface_link, init=True) initial_poses[surface_name] = world_pose init += [ #('RelPose', surface_name, world_pose, 'world'), ('WorldPose', surface_name, world_pose), #('AtRelPose', surface_name, world_pose, 'world'), ('AtWorldPose', surface_name, world_pose), ('Sample', world_pose), #('Value', world_pose), ] init.extend([ ('CheckNearby', surface_name), #('InitPose', world_pose), ('Localized', surface_name), ]) for grasp_type in task.grasp_types: if (surface_name in OPEN_SURFACES) or has_place_database( world.robot_name, surface_name, grasp_type): init.append(('AdmitsGraspType', surface_name, grasp_type)) if belief.grasped is None: init.extend([ ('HandEmpty', ), ('GConf', init_gq), ('AtGConf', init_gq), ]) else: obj_name = belief.grasped.body_name assert obj_name not in belief.pose_dists grasp = belief.grasped init += [ # Static #('Graspable', obj_name), ('Grasp', obj_name, grasp), ('IsGraspType', obj_name, grasp, grasp.grasp_type), # Fluent ('AtGrasp', obj_name, grasp), ('Holding', obj_name), ('Localized', obj_name), ] init.extend(('ValidGraspType', obj_name, grasp_type) for grasp_type in task.grasp_types if implies(world.is_real(), is_valid_grasp_type(obj_name, grasp_type))) for obj_name in world.movable: obj_type = type_from_name(obj_name) if obj_type in BOWLS: init.append(('Bowl', obj_name)) else: init.append( ('Obstacle', obj_name)) # TODO: hack to place within bowls if obj_type in COOKABLE: init.append(('Cookable', obj_name)) if obj_type in POURABLE: init.append(('Pourable', obj_name)) init += [ ('Entity', obj_name), ('CheckNearby', obj_name), ] + [('Stackable', obj_name, counter) for counter in set(ALL_SURFACES) & set(COUNTERS)] # TODO: track poses over time to produce estimates for obj_name, pose_dist in belief.pose_dists.items(): dist_support = pose_dist.dist.support() localized = pose_dist.is_localized() graspable = True if localized: init.append(('Localized', obj_name)) [rel_pose] = dist_support roll, pitch, yaw = euler_from_quat( quat_from_pose(rel_pose.get_reference_from_body())) if (MAX_ERROR < abs(roll)) or (MAX_ERROR < abs(pitch)): graspable = False print( '{} has an invalid orientation: roll={:.3f}, pitch={:.3f}'. format(obj_name, roll, pitch)) if graspable: #init.append(('Graspable', obj_name)) init.extend(('ValidGraspType', obj_name, grasp_type) for grasp_type in task.grasp_types if implies(world.is_real(), is_valid_grasp_type(obj_name, grasp_type))) # Could also fully decompose into points (but many samples) # Could immediately add likely points for collision checking for rel_pose in (dist_support if localized else pose_dist.decompose()): surface_name = rel_pose.support if surface_name is None: # Treats as obstacle # TODO: could temporarily add to fixed world_pose = rel_pose init += [ ('WorldPose', obj_name, world_pose), ('AtWorldPose', obj_name, world_pose), ] poses = [world_pose] #raise RuntimeError(obj_name, supporting) else: surface_pose = initial_poses[surface_name] world_pose, = compute_pose_kin(obj_name, rel_pose, surface_name, surface_pose) init += [ # Static ('RelPose', obj_name, rel_pose, surface_name), ('WorldPose', obj_name, world_pose), ('PoseKin', obj_name, world_pose, rel_pose, surface_name, surface_pose), # Fluent ('AtRelPose', obj_name, rel_pose, surface_name), ('AtWorldPose', obj_name, world_pose), ] if localized: init.append(('On', obj_name, surface_name)) poses = [rel_pose, world_pose] for pose in poses: if isinstance(pose, PoseDist): init.append(('Dist', pose)) else: init.extend([('Sample', pose)]) #, ('Value', pose)]) #for body, ty in problem.body_types: # init += [('Type', body, ty)] #bodies_from_type = get_bodies_from_type(problem) #bodies = bodies_from_type[get_parameter_name(ty)] if is_parameter(ty) else [ty] goal_formula = get_goal(belief, init) stream_pddl, stream_map = get_streams(world, teleport_base=task.teleport_base, **kwargs) print('Constants:', constant_map) print('Init:', sorted(init, key=lambda f: f[0])) print('Goal:', goal_formula) #print('Streams:', stream_map.keys()) # DEBUG return PDDLProblem(domain_pddl, constant_map, stream_pddl, stream_map, init, goal_formula)