Example #1
0
def build_arg_parser(args):
  arg_parser = ArgParser()
  arg_parser.load_args(args)

  arg_file = arg_parser.parse_string('arg_file', '')
  if (arg_file != ''):
    path = pybullet_data.getDataPath() + "/args/" + arg_file
    succ = arg_parser.load_file(path)
    Logger.print2(arg_file)
    assert succ, Logger.print2('Failed to load args from: ' + arg_file)
  return arg_parser
Example #2
0
def main():
    # Command line arguments
    args = sys.argv[1:]
    arg_parser = ArgParser()
    arg_parser.load_args(args)

    num_workers = arg_parser.parse_int('num_workers', 1)
    assert (num_workers > 0)

    Logger.print2('Running with {:d} workers'.format(num_workers))
    cmd = 'mpiexec -n {:d} python3 DeepMimic_Optimizer.py '.format(num_workers)
    cmd += ' '.join(args)
    Logger.print2('cmd: ' + cmd)
    subprocess.call(cmd, shell=True)
Example #3
0
def main():
  # Command line arguments
  args = sys.argv[1:]
  arg_parser = ArgParser()
  arg_parser.load_args(args)

  num_workers = arg_parser.parse_int('num_workers', 1)
  assert (num_workers > 0)

  Logger.print2('Running with {:d} workers'.format(num_workers))
  cmd = 'mpiexec -n {:d} python3 DeepMimic_Optimizer.py '.format(num_workers)
  cmd += ' '.join(args)
  Logger.print2('cmd: ' + cmd)
  subprocess.call(cmd, shell=True)
  return
Example #4
0
def build_arg_parser(args):
    arg_parser = ArgParser()
    arg_parser.load_args(args)

    arg_file = arg_parser.parse_string('arg_file', '')
    if (arg_file != ''):
        path = pybullet_data.getDataPath() + "/args/" + arg_file
        succ = arg_parser.load_file(path)
        Logger.print2(arg_file)
        assert succ, Logger.print2('Failed to load args from: ' + arg_file)
    return arg_parser
Example #5
0
def build_arg_parser(args):
    arg_parser = ArgParser()
    arg_parser.load_args(args)

    arg_file = arg_parser.parse_string('arg_file', '')
    if arg_file == '':
        arg_file = "run_humanoid3d_backflip_args.txt"
    if (arg_file != ''):
        path = pybullet_data.getDataPath() + "/args/" + arg_file
        if os.path.isfile(path):
            succ = arg_parser.load_file(path)
        else:
            files = [arg_parser.load_file(f) for f in os.listdir(path) if os.path.isfile(os.path.join(path, f))]
            succ = all(files)
        Logger.print2(arg_file)
        assert succ, Logger.print2('Failed to load args from: ' + arg_file)
    return arg_parser
def build_world(enable_draw, arg_file):
    arg_parser = ArgParser()

    arg_parser.load_file(arg_file)
    arg_parser.parse_string("motion_file")

    env = PyBulletDeepMimicEnv(arg_parser=arg_parser, enable_draw=enable_draw)

    world = RLWorld(env, arg_parser)

    agent_data = load_agent_data(agent_file)

    PPOAgent(world=world, id=id, json_data=agent_data)

    return world
Example #7
0
    def __init__(self,
                 renders=False,
                 arg_file='',
                 test_mode=False,
                 time_step=1. / 240,
                 rescale_actions=False,
                 rescale_observations=False):
        """
        Args:
          test_mode (bool): in test mode, the `reset()` method will always set the mocap clip time
          to 0.
          time_step (float): physics time step.
        """
        self._arg_parser = ArgParser()
        Logger.print2(
            "===========================================================")
        succ = False
        if (arg_file != ''):
            path = pybullet_data.getDataPath() + "/args/" + arg_file
            succ = self._arg_parser.load_file(path)
            Logger.print2(arg_file)
        assert succ, Logger.print2('Failed to load args from: ' + arg_file)

        self._p: Optional[BulletClient] = None
        self._time_step = time_step
        self._internal_env: Optional[PyBulletDeepMimicEnv] = None
        self._renders = renders
        self._discrete_actions = False
        self._arg_file = arg_file
        self._render_height = 400
        self._render_width = 640
        self._rescale_actions = rescale_actions
        self._rescale_observations = rescale_observations
        self.agent_id = -1

        self._numSteps = None
        self.test_mode = test_mode
        if self.test_mode:
            print("Environment running in TEST mode")

        self.reset()

        # Query the policy at 30Hz
        self.policy_query_30 = True
        if self.policy_query_30:
            self._policy_step = 1. / 30
        else:
            self._policy_step = 1. / 240
        self._num_env_steps = int(self._policy_step / self._time_step)

        self.theta_threshold_radians = 12 * 2 * math.pi / 360
        self.x_threshold = 0.4  # 2.4
        high = np.array([
            self.x_threshold * 2,
            np.finfo(np.float32).max, self.theta_threshold_radians * 2,
            np.finfo(np.float32).max
        ])

        ctrl_size = 43  # numDof
        root_size = 7  # root

        action_dim = ctrl_size - root_size

        action_bound_min = np.array([
            -4.79999999999, -1.00000000000, -1.00000000000, -1.00000000000,
            -4.00000000000, -1.00000000000, -1.00000000000, -1.00000000000,
            -7.77999999999, -1.00000000000, -1.000000000, -1.000000000,
            -7.850000000, -6.280000000, -1.000000000, -1.000000000,
            -1.000000000, -12.56000000, -1.000000000, -1.000000000,
            -1.000000000, -4.710000000, -7.779999999, -1.000000000,
            -1.000000000, -1.000000000, -7.850000000, -6.280000000,
            -1.000000000, -1.000000000, -1.000000000, -8.460000000,
            -1.000000000, -1.000000000, -1.000000000, -4.710000000
        ])

        # print("len(action_bound_min)=",len(action_bound_min))
        action_bound_max = np.array([
            4.799999999, 1.000000000, 1.000000000, 1.000000000, 4.000000000,
            1.000000000, 1.000000000, 1.000000000, 8.779999999, 1.000000000,
            1.0000000, 1.0000000, 4.7100000, 6.2800000, 1.0000000, 1.0000000,
            1.0000000, 12.560000, 1.0000000, 1.0000000, 1.0000000, 7.8500000,
            8.7799999, 1.0000000, 1.0000000, 1.0000000, 4.7100000, 6.2800000,
            1.0000000, 1.0000000, 1.0000000, 10.100000, 1.0000000, 1.0000000,
            1.0000000, 7.8500000
        ])
        # print("len(action_bound_max)=",len(action_bound_max))

        self.action_space = spaces.Box(action_bound_min, action_bound_max)
        observation_min = np.array([0.0] + [-100.0] + [-4.0] * 105 +
                                   [-500.0] * 90)
        observation_max = np.array([1.0] + [100.0] + [4.0] * 105 +
                                   [500.0] * 90)
        state_size = 197
        self.observation_space = spaces.Box(observation_min,
                                            observation_min,
                                            dtype=np.float32)

        self.seed()

        self.viewer = None
        self._configure()
Example #8
0
class HumanoidDeepBulletEnv(gym.Env):
    """Base Gym environment for DeepMimic."""
    metadata = {
        'render.modes': ['human', 'rgb_array'],
        'video.frames_per_second': 50
    }

    def __init__(self,
                 renders=False,
                 arg_file='',
                 test_mode=False,
                 time_step=1. / 240,
                 rescale_actions=False,
                 rescale_observations=False):
        """
        Args:
          test_mode (bool): in test mode, the `reset()` method will always set the mocap clip time
          to 0.
          time_step (float): physics time step.
        """
        self._arg_parser = ArgParser()
        Logger.print2(
            "===========================================================")
        succ = False
        if (arg_file != ''):
            path = pybullet_data.getDataPath() + "/args/" + arg_file
            succ = self._arg_parser.load_file(path)
            Logger.print2(arg_file)
        assert succ, Logger.print2('Failed to load args from: ' + arg_file)

        self._p: Optional[BulletClient] = None
        self._time_step = time_step
        self._internal_env: Optional[PyBulletDeepMimicEnv] = None
        self._renders = renders
        self._discrete_actions = False
        self._arg_file = arg_file
        self._render_height = 400
        self._render_width = 640
        self._rescale_actions = rescale_actions
        self._rescale_observations = rescale_observations
        self.agent_id = -1

        self._numSteps = None
        self.test_mode = test_mode
        if self.test_mode:
            print("Environment running in TEST mode")

        self.reset()

        # Query the policy at 30Hz
        self.policy_query_30 = True
        if self.policy_query_30:
            self._policy_step = 1. / 30
        else:
            self._policy_step = 1. / 240
        self._num_env_steps = int(self._policy_step / self._time_step)

        self.theta_threshold_radians = 12 * 2 * math.pi / 360
        self.x_threshold = 0.4  # 2.4
        high = np.array([
            self.x_threshold * 2,
            np.finfo(np.float32).max, self.theta_threshold_radians * 2,
            np.finfo(np.float32).max
        ])

        ctrl_size = 43  # numDof
        root_size = 7  # root

        action_dim = ctrl_size - root_size

        action_bound_min = np.array([
            -4.79999999999, -1.00000000000, -1.00000000000, -1.00000000000,
            -4.00000000000, -1.00000000000, -1.00000000000, -1.00000000000,
            -7.77999999999, -1.00000000000, -1.000000000, -1.000000000,
            -7.850000000, -6.280000000, -1.000000000, -1.000000000,
            -1.000000000, -12.56000000, -1.000000000, -1.000000000,
            -1.000000000, -4.710000000, -7.779999999, -1.000000000,
            -1.000000000, -1.000000000, -7.850000000, -6.280000000,
            -1.000000000, -1.000000000, -1.000000000, -8.460000000,
            -1.000000000, -1.000000000, -1.000000000, -4.710000000
        ])

        # print("len(action_bound_min)=",len(action_bound_min))
        action_bound_max = np.array([
            4.799999999, 1.000000000, 1.000000000, 1.000000000, 4.000000000,
            1.000000000, 1.000000000, 1.000000000, 8.779999999, 1.000000000,
            1.0000000, 1.0000000, 4.7100000, 6.2800000, 1.0000000, 1.0000000,
            1.0000000, 12.560000, 1.0000000, 1.0000000, 1.0000000, 7.8500000,
            8.7799999, 1.0000000, 1.0000000, 1.0000000, 4.7100000, 6.2800000,
            1.0000000, 1.0000000, 1.0000000, 10.100000, 1.0000000, 1.0000000,
            1.0000000, 7.8500000
        ])
        # print("len(action_bound_max)=",len(action_bound_max))

        self.action_space = spaces.Box(action_bound_min, action_bound_max)
        observation_min = np.array([0.0] + [-100.0] + [-4.0] * 105 +
                                   [-500.0] * 90)
        observation_max = np.array([1.0] + [100.0] + [4.0] * 105 +
                                   [500.0] * 90)
        state_size = 197
        self.observation_space = spaces.Box(observation_min,
                                            observation_min,
                                            dtype=np.float32)

        self.seed()

        self.viewer = None
        self._configure()

    def _configure(self, display=None):
        self.display = display

    def seed(self, seed=None):
        self.np_random, seed = seeding.np_random(seed)
        return [seed]

    def step(self, action):
        agent_id = self.agent_id

        if self._rescale_actions:
            # Rescale the action
            mean = -self._action_offset
            std = 1. / self._action_scale
            action = action * std + mean

        # Record reward
        reward = self._internal_env.calc_reward(agent_id)

        # Apply control action
        self._internal_env.set_action(agent_id, action)

        start_time = self._internal_env.t

        # step sim
        for i in range(self._num_env_steps):
            self._internal_env.update(self._time_step)

        elapsed_time = self._internal_env.t - start_time

        self._numSteps += 1

        # Record state
        self.state = self._internal_env.record_state(agent_id)

        if self._rescale_observations:
            state = np.array(self.state)
            mean = -self._state_offset
            std = 1. / self._state_scale
            state = (state - mean) / (std + 1e-8)

        # Record done
        done = self._internal_env.is_episode_end()

        info = {}
        return self.state, reward, done, info

    def reset(self):
        # use the initialization strategy
        if self._internal_env is None:
            if self.test_mode:
                init_strat = InitializationStrategy.START
            else:
                init_strat = InitializationStrategy.RANDOM
            self._internal_env = PyBulletDeepMimicEnv(
                self._arg_parser,
                self._renders,
                time_step=self._time_step,
                init_strategy=init_strat)

        self._internal_env.reset()
        self._p = self._internal_env._pybullet_client
        agent_id = self.agent_id  # unused here
        self._state_offset = self._internal_env.build_state_offset(
            self.agent_id)
        self._state_scale = self._internal_env.build_state_scale(self.agent_id)
        self._action_offset = self._internal_env.build_action_offset(
            self.agent_id)
        self._action_scale = self._internal_env.build_action_scale(
            self.agent_id)
        self._numSteps = 0
        # Record state
        self.state = self._internal_env.record_state(agent_id)

        # return state as ndarray
        state = np.array(self.state)
        if self._rescale_observations:
            mean = -self._state_offset
            std = 1. / self._state_scale
            state = (state - mean) / (std + 1e-8)
        return state

    def render(self, mode='human', close=False):
        if mode == "human":
            self._renders = True
        if mode != "rgb_array":
            return np.array([])
        human = self._internal_env._humanoid
        base_pos, orn = self._p.getBasePositionAndOrientation(human._sim_model)
        base_pos = np.asarray(base_pos)
        # track the position
        base_pos[1] += 0.3
        rpy = self._p.getEulerFromQuaternion(orn)  # rpy, in radians
        rpy = 180 / np.pi * np.asarray(rpy)  # convert rpy in degrees

        self._cam_dist = 3
        self._cam_pitch = 0.3
        self._cam_yaw = 0
        if (not self._p == None):
            view_matrix = self._p.computeViewMatrixFromYawPitchRoll(
                cameraTargetPosition=base_pos,
                distance=self._cam_dist,
                yaw=self._cam_yaw,
                pitch=self._cam_pitch,
                roll=0,
                upAxisIndex=1)
            proj_matrix = self._p.computeProjectionMatrixFOV(
                fov=60,
                aspect=float(self._render_width) / self._render_height,
                nearVal=0.1,
                farVal=100.0)
            (_, _, px, _, _) = self._p.getCameraImage(
                width=self._render_width,
                height=self._render_height,
                renderer=self._p.ER_BULLET_HARDWARE_OPENGL,
                viewMatrix=view_matrix,
                projectionMatrix=proj_matrix)
            # self._p.resetDebugVisualizerCamera(
            #   cameraDistance=2 * self._cam_dist,
            #   cameraYaw=self._cam_yaw,
            #   cameraPitch=self._cam_pitch,
            #   cameraTargetPosition=base_pos
            # )
        else:
            px = np.array([[[255, 255, 255, 255]] * self._render_width] *
                          self._render_height,
                          dtype=np.uint8)
        rgb_array = np.array(px, dtype=np.uint8)
        rgb_array = np.reshape(np.array(px),
                               (self._render_height, self._render_width, -1))
        rgb_array = rgb_array[:, :, :3]
        return rgb_array

    def configure(self, args):
        pass

    def close(self):

        pass
    def __init__(self, renders=False, arg_file=''):

        self._arg_parser = ArgParser()
        Logger.print2(
            "===========================================================")
        succ = False
        if (arg_file != ''):
            path = pybullet_data.getDataPath() + "/args/" + arg_file
            succ = self._arg_parser.load_file(path)
            Logger.print2(arg_file)
        assert succ, Logger.print2('Failed to load args from: ' + arg_file)

        self._p = None
        self._time_step = 1. / 240.
        self._internal_env = None
        self._renders = renders
        self._discrete_actions = False
        self._arg_file = arg_file
        self._render_height = 200
        self._render_width = 320

        self.theta_threshold_radians = 12 * 2 * math.pi / 360
        self.x_threshold = 0.4  #2.4
        high = np.array([
            self.x_threshold * 2,
            np.finfo(np.float32).max, self.theta_threshold_radians * 2,
            np.finfo(np.float32).max
        ])

        ctrl_size = 43  #numDof
        root_size = 7  # root

        action_dim = ctrl_size - root_size

        action_bound_min = np.array([
            -4.79999999999, -1.00000000000, -1.00000000000, -1.00000000000,
            -4.00000000000, -1.00000000000, -1.00000000000, -1.00000000000,
            -7.77999999999, -1.00000000000, -1.000000000, -1.000000000,
            -7.850000000, -6.280000000, -1.000000000, -1.000000000,
            -1.000000000, -12.56000000, -1.000000000, -1.000000000,
            -1.000000000, -4.710000000, -7.779999999, -1.000000000,
            -1.000000000, -1.000000000, -7.850000000, -6.280000000,
            -1.000000000, -1.000000000, -1.000000000, -8.460000000,
            -1.000000000, -1.000000000, -1.000000000, -4.710000000
        ])

        #print("len(action_bound_min)=",len(action_bound_min))
        action_bound_max = np.array([
            4.799999999, 1.000000000, 1.000000000, 1.000000000, 4.000000000,
            1.000000000, 1.000000000, 1.000000000, 8.779999999, 1.000000000,
            1.0000000, 1.0000000, 4.7100000, 6.2800000, 1.0000000, 1.0000000,
            1.0000000, 12.560000, 1.0000000, 1.0000000, 1.0000000, 7.8500000,
            8.7799999, 1.0000000, 1.0000000, 1.0000000, 4.7100000, 6.2800000,
            1.0000000, 1.0000000, 1.0000000, 10.100000, 1.0000000, 1.0000000,
            1.0000000, 7.8500000
        ])
        #print("len(action_bound_max)=",len(action_bound_max))

        self.action_space = spaces.Box(action_bound_min, action_bound_max)
        observation_min = np.array([0.0] + [-100.0] + [-4.0] * 105 +
                                   [-500.0] * 90)
        observation_max = np.array([1.0] + [100.0] + [4.0] * 105 +
                                   [500.0] * 90)
        state_size = 197
        self.observation_space = spaces.Box(observation_min,
                                            observation_min,
                                            dtype=np.float32)

        self.seed()

        self.viewer = None
        self._configure()
Example #10
0
class HumanoidDeepBulletEnv(gym.Env):
    metadata = {
        'render.modes': ['human', 'rgb_array'],
        'video.frames_per_second': 50
    }

    def __init__(self, renders=False, arg_file=''):

        self._arg_parser = ArgParser()
        Logger.print2(
            "===========================================================")
        succ = False
        if (arg_file != ''):
            path = pybullet_data.getDataPath() + "/args/" + arg_file
            succ = self._arg_parser.load_file(path)
            Logger.print2(arg_file)
        assert succ, Logger.print2('Failed to load args from: ' + arg_file)

        self._p = None
        self._time_step = 1. / 240.
        self._internal_env = None
        self._renders = renders
        self._discrete_actions = False
        self._arg_file = arg_file
        self._render_height = 200
        self._render_width = 320

        self.theta_threshold_radians = 12 * 2 * math.pi / 360
        self.x_threshold = 0.4  #2.4
        high = np.array([
            self.x_threshold * 2,
            np.finfo(np.float32).max, self.theta_threshold_radians * 2,
            np.finfo(np.float32).max
        ])

        ctrl_size = 43  #numDof
        root_size = 7  # root

        action_dim = ctrl_size - root_size

        action_bound_min = np.array([
            -4.79999999999, -1.00000000000, -1.00000000000, -1.00000000000,
            -4.00000000000, -1.00000000000, -1.00000000000, -1.00000000000,
            -7.77999999999, -1.00000000000, -1.000000000, -1.000000000,
            -7.850000000, -6.280000000, -1.000000000, -1.000000000,
            -1.000000000, -12.56000000, -1.000000000, -1.000000000,
            -1.000000000, -4.710000000, -7.779999999, -1.000000000,
            -1.000000000, -1.000000000, -7.850000000, -6.280000000,
            -1.000000000, -1.000000000, -1.000000000, -8.460000000,
            -1.000000000, -1.000000000, -1.000000000, -4.710000000
        ])

        #print("len(action_bound_min)=",len(action_bound_min))
        action_bound_max = np.array([
            4.799999999, 1.000000000, 1.000000000, 1.000000000, 4.000000000,
            1.000000000, 1.000000000, 1.000000000, 8.779999999, 1.000000000,
            1.0000000, 1.0000000, 4.7100000, 6.2800000, 1.0000000, 1.0000000,
            1.0000000, 12.560000, 1.0000000, 1.0000000, 1.0000000, 7.8500000,
            8.7799999, 1.0000000, 1.0000000, 1.0000000, 4.7100000, 6.2800000,
            1.0000000, 1.0000000, 1.0000000, 10.100000, 1.0000000, 1.0000000,
            1.0000000, 7.8500000
        ])
        #print("len(action_bound_max)=",len(action_bound_max))

        self.action_space = spaces.Box(action_bound_min, action_bound_max)
        observation_min = np.array([0.0] + [-100.0] + [-4.0] * 105 +
                                   [-500.0] * 90)
        observation_max = np.array([1.0] + [100.0] + [4.0] * 105 +
                                   [500.0] * 90)
        state_size = 197
        self.observation_space = spaces.Box(observation_min,
                                            observation_min,
                                            dtype=np.float32)

        self.seed()

        self.viewer = None
        self._configure()

    def _configure(self, display=None):
        self.display = display

    def seed(self, seed=None):
        self.np_random, seed = seeding.np_random(seed)
        return [seed]

    def step(self, action):

        #apply control action
        agent_id = -1
        self._internal_env.set_action(agent_id, action)

        #step sim
        self._internal_env.update(self._time_step)

        #record state
        self.state = self._internal_env.record_state(agent_id)

        #record reward
        reward = self._internal_env.calc_reward(agent_id)

        #record done
        done = self._internal_env.is_episode_end()

        return np.array(self.state), reward, done, {}

    def reset(self):
        #    print("-----------reset simulation---------------")
        if self._internal_env == None:
            self._internal_env = PyBulletDeepMimicEnv(self._arg_parser,
                                                      self._renders)
        self._internal_env.reset()
        self._p = self._internal_env._pybullet_client
        agent_id = -1  #unused here
        state = self._internal_env.record_state(agent_id)
        return state

    def render(self, mode='human', close=False):
        if mode == "human":
            self._renders = True
        if mode != "rgb_array":
            return np.array([])
        base_pos = [0, 0, 0]
        self._cam_dist = 2
        self._cam_pitch = 0.3
        self._cam_yaw = 0
        if (not self._p == None):
            view_matrix = self._p.computeViewMatrixFromYawPitchRoll(
                cameraTargetPosition=base_pos,
                distance=self._cam_dist,
                yaw=self._cam_yaw,
                pitch=self._cam_pitch,
                roll=0,
                upAxisIndex=2)
            proj_matrix = self._p.computeProjectionMatrixFOV(
                fov=60,
                aspect=float(self._render_width) / self._render_height,
                nearVal=0.1,
                farVal=100.0)
            (_, _, px, _, _) = self._p.getCameraImage(
                width=self._render_width,
                height=self._render_height,
                renderer=self._p.ER_BULLET_HARDWARE_OPENGL,
                viewMatrix=view_matrix,
                projectionMatrix=proj_matrix)
        else:
            px = np.array([[[255, 255, 255, 255]] * self._render_width] *
                          self._render_height,
                          dtype=np.uint8)
        rgb_array = np.array(px, dtype=np.uint8)
        rgb_array = np.reshape(np.array(px),
                               (self._render_height, self._render_width, -1))
        rgb_array = rgb_array[:, :, :3]
        return rgb_array

    def configure(self, args):
        pass

    def close(self):

        pass
Example #11
0
import sys
import pybullet_data

from learning.rl_world import RLWorld
from pybullet_utils.arg_parser import ArgParser
from env.pybullet_deep_mimic_gym_env import PyBulletDeepMimicEnv

if __name__ == '__main__':

    enable_draw = True
    timestep = 1. / 240.

    args = sys.argv[1:]

    arg_parser = ArgParser()
    arg_parser.load_args(args)
    arg_file = arg_parser.parse_string('arg_file',
                                       "run_humanoid3d_spinkick_args.txt")
    arg_parser.load_file(pybullet_data.getDataPath() + "/args/" + arg_file)

    motion_file = arg_parser.parse_strings('motion_file')
    fall_contact_bodies = arg_parser.parse_ints("fall_contact_bodies")

    env = PyBulletDeepMimicEnv(motion_file, enable_draw, fall_contact_bodies)
    world = RLWorld(env, arg_parser)

    world.reset()

    total_reward = 0
    steps = 0