def test(): # loading dataset data = pycaret.datasets.get_data('boston') assert isinstance(data, pd.core.frame.DataFrame) # init setup reg = pycaret.regression.setup(data, target='medv', train_size=0.99, fold=2, silent=True, html=False, session_id=123, n_jobs=1) models = pycaret.regression.compare_models(turbo=False, n_select=100) models.append(pycaret.regression.stack_models(models[:3])) models.append(pycaret.regression.ensemble_model(models[0])) for model in models: print(f"Testing model {model}") pycaret.regression.tune_model(model, fold=2, n_iter=2, search_library='scikit-learn', search_algorithm='random', early_stopping=False) pycaret.regression.tune_model(model, fold=2, n_iter=2, search_library='scikit-optimize', search_algorithm='bayesian', early_stopping=False) pycaret.regression.tune_model(model, fold=2, n_iter=2, search_library='optuna', search_algorithm='tpe', early_stopping=False) pycaret.regression.tune_model(model, fold=2, n_iter=2, search_library='tune-sklearn', search_algorithm='random', early_stopping=False) pycaret.regression.tune_model(model, fold=2, n_iter=2, search_library='optuna', search_algorithm='tpe', early_stopping="asha") pycaret.regression.tune_model(model, fold=2, n_iter=2, search_library='tune-sklearn', search_algorithm='hyperopt', early_stopping="asha") pycaret.regression.tune_model(model, fold=2, n_iter=2, search_library='tune-sklearn', search_algorithm='bayesian', early_stopping="asha") if can_early_stop(model, True, True, True, {}): pycaret.regression.tune_model(model, fold=2, n_iter=2, search_library='tune-sklearn', search_algorithm='bohb', early_stopping=True) assert 1 == 1
def test(): # loading dataset data = pycaret.datasets.get_data("juice") assert isinstance(data, pd.core.frame.DataFrame) # init setup clf1 = pycaret.classification.setup( data, target="Purchase", train_size=0.99, fold=2, silent=True, html=False, session_id=123, n_jobs=1, ) models = pycaret.classification.compare_models(turbo=False, n_select=100) models.append(pycaret.classification.stack_models(models[:3])) models.append(pycaret.classification.ensemble_model(models[0])) for model in models: print(f"Testing model {model}") pycaret.classification.tune_model( model, fold=2, n_iter=2, search_library="scikit-learn", search_algorithm="random", early_stopping=False, ) pycaret.classification.tune_model( model, fold=2, n_iter=2, search_library="scikit-optimize", search_algorithm="bayesian", early_stopping=False, ) pycaret.classification.tune_model( model, fold=2, n_iter=2, search_library="optuna", search_algorithm="tpe", early_stopping=False, ) pycaret.classification.tune_model( model, fold=2, n_iter=2, search_library="tune-sklearn", search_algorithm="random", early_stopping=False, ) pycaret.classification.tune_model( model, fold=2, n_iter=2, search_library="tune-sklearn", search_algorithm="optuna", early_stopping=False, ) pycaret.classification.tune_model( model, fold=2, n_iter=2, search_library="optuna", search_algorithm="tpe", early_stopping="asha", ) pycaret.classification.tune_model( model, fold=2, n_iter=2, search_library="tune-sklearn", search_algorithm="hyperopt", early_stopping="asha", ) pycaret.classification.tune_model( model, fold=2, n_iter=2, search_library="tune-sklearn", search_algorithm="bayesian", early_stopping="asha", ) if can_early_stop(model, True, True, True, {}): pycaret.classification.tune_model( model, fold=2, n_iter=2, search_library="tune-sklearn", search_algorithm="bohb", early_stopping=True, ) assert 1 == 1