Example #1
0
    def transform(self, maps):
        """ This function transforms from distance to redshift.

        Parameters
        ----------
        maps : a mapping object

        Examples
        --------
        Convert a dict of numpy.array:

        >>> import numpy
        >>> from pycbc import transforms
        >>> t = transforms.DistanceToRedshift()
        >>> t.transform({'distance': numpy.array([1000])})
            {'distance': array([1000]), 'redshift': 0.19650987609144363}

        Returns
        -------
        out : dict
            A dict with key as parameter name and value as numpy.array or float
            of transformed values.
        """
        out = {
            parameters.redshift: cosmology.redshift(maps[parameters.distance])
        }
        return self.format_output(maps, out)
Example #2
0
    def transform(self, maps):
        """ This function transforms from distance to redshift.

        Parameters
        ----------
        maps : a mapping object

        Examples
        --------
        Convert a dict of numpy.array:

        >>> import numpy
        >>> from pycbc import transforms
        >>> t = transforms.DistanceToRedshift()
        >>> t.transform({'distance': numpy.array([1000])})
            {'distance': array([1000]), 'redshift': 0.19650987609144363}

        Returns
        -------
        out : dict
            A dict with key as parameter name and value as numpy.array or float
            of transformed values.
        """
        out = {parameters.redshift : cosmology.redshift(
                                                    maps[parameters.distance])}
        return self.format_output(maps, out)
#     eos=EOS_BPSwithPoly([baryon_density0,p1,baryon_density1,p2,baryon_density2,p3,baryon_density3])
#     maxmass_result=Maxmass(Preset_Pressure_final,Preset_rtol,eos)
#     args=[eos,maxmass_result[1],maxmass_result[2]]
#     Lambda_list=[]
#     for mass_i in mass:
#         if(mass_i>args[2]):
#             Lambda_list.append(0)
#         else:
#             ofmass_result=Properity_ofmass(mass_i,Preset_pressure_center_low,args[1],MassRadius,Preset_Pressure_final,Preset_rtol,Preset_Pressure_final_index,args[0])
#             Lambda_list.append(ofmass_result[5])
#     return Lambda_list
# =============================================================================

from pycbc import cosmology
distance = 40.7  # in Mpc
redshift = cosmology.redshift(distance)

import h5py
filename = 'uniform_mass_prior_common_eos_20hz_lowfreq_posteriors.hdf'
fp = h5py.File(filename, "r")
print fp.attrs['variable_args']
m1 = (fp['samples/mass1'][:100] / (1 + redshift)).flatten()
m2 = (fp['samples/mass2'][:100] / (1 + redshift)).flatten()
Lambdasym = (fp['samples/lambdasym'][:100]).flatten()
q = m2 / m1
fp.close()
Lambda1 = Lambdasym * (m2 / m1)**3
Lambda2 = Lambdasym * (m1 / m2)**3
array_mass = np.concatenate((m1, m2))
array_log10_Lambda = np.log10(np.concatenate((Lambda1, Lambda2)))
array_mass = np.array([1.3, 1.4])