Example #1
0
    def save(self, filename):
        """Write this trigger to gracedb compatible xml format

        Parameters
        ----------
        filename: str
            Name of file to write to disk.
        """
        ligolw_utils.write_filename(self.outdoc, filename)
Example #2
0
    def save(self, filename):
        """Write this trigger to gracedb compatible xml format

        Parameters
        ----------
        filename: str
            Name of file to write to disk.
        """
        ligolw_utils.write_filename(self.outdoc, filename)
def output_sngl_inspiral_table(outputFile, tempBank, metricParams,
                               ethincaParams, programName="", optDict = None,
                               outdoc=None, **kwargs):
    """
    Function that converts the information produced by the various pyCBC bank
    generation codes into a valid LIGOLW xml file containing a sngl_inspiral
    table and outputs to file.

    Parameters
    -----------
    outputFile : string
        Name of the file that the bank will be written to
    tempBank : iterable
        Each entry in the tempBank iterable should be a sequence of
        [mass1,mass2,spin1z,spin2z] in that order.
    metricParams : metricParameters instance
        Structure holding all the options for construction of the metric
        and the eigenvalues, eigenvectors and covariance matrix
        needed to manipulate the space.
    ethincaParams: {ethincaParameters instance, None}
        Structure holding options relevant to the ethinca metric computation
        including the upper frequency cutoff to be used for filtering.
        NOTE: The computation is currently only valid for non-spinning systems
        and uses the TaylorF2 approximant.
    programName (key-word-argument) : string
        Name of the executable that has been run
    optDict (key-word argument) : dictionary
        Dictionary of the command line arguments passed to the program
    outdoc (key-word argument) : ligolw xml document
        If given add template bank to this representation of a xml document and
        write to disk. If not given create a new document.
    kwargs : key-word arguments
        All other key word arguments will be passed directly to
        ligolw_process.register_to_xmldoc
    """
    if optDict is None:
        optDict = {}
    if outdoc is None:
        outdoc = ligolw.Document()
        outdoc.appendChild(ligolw.LIGO_LW())

    # get IFO to put in search summary table
    ifos = []
    if 'channel_name' in optDict.keys():
        if optDict['channel_name'] is not None:
            ifos = [optDict['channel_name'][0:2]]

    proc_id = ligolw_process.register_to_xmldoc(outdoc, programName, optDict,
                                                ifos=ifos, **kwargs).process_id
    sngl_inspiral_table = convert_to_sngl_inspiral_table(tempBank, proc_id)
    # Calculate Gamma components if needed
    if ethincaParams is not None:
        if ethincaParams.doEthinca:
            for sngl in sngl_inspiral_table:
                # Set tau_0 and tau_3 values needed for the calculation of
                # ethinca metric distances
                (sngl.tau0,sngl.tau3) = pnutils.mass1_mass2_to_tau0_tau3(
                    sngl.mass1, sngl.mass2, metricParams.f0)
                fMax_theor, GammaVals = calculate_ethinca_metric_comps(
                    metricParams, ethincaParams,
                    sngl.mass1, sngl.mass2, spin1z=sngl.spin1z,
                    spin2z=sngl.spin2z, full_ethinca=ethincaParams.full_ethinca)
                # assign the upper frequency cutoff and Gamma0-5 values
                sngl.f_final = fMax_theor
                for i in xrange(len(GammaVals)):
                    setattr(sngl, "Gamma"+str(i), GammaVals[i])
        # If Gamma metric components are not wanted, assign f_final from an
        # upper frequency cutoff specified in ethincaParams
        elif ethincaParams.cutoff is not None:
            for sngl in sngl_inspiral_table:
                sngl.f_final = pnutils.frequency_cutoff_from_name(
                    ethincaParams.cutoff,
                    sngl.mass1, sngl.mass2, sngl.spin1z, sngl.spin2z)

    # set per-template low-frequency cutoff
    if 'f_low_column' in optDict and 'f_low' in optDict and \
            optDict['f_low_column'] is not None:
        for sngl in sngl_inspiral_table:
            setattr(sngl, optDict['f_low_column'], optDict['f_low'])

    outdoc.childNodes[0].appendChild(sngl_inspiral_table)

    # get times to put in search summary table
    start_time = 0
    end_time = 0
    if 'gps_start_time' in optDict.keys() and 'gps_end_time' in optDict.keys():
        start_time = optDict['gps_start_time']
        end_time = optDict['gps_end_time']

    # make search summary table
    search_summary_table = lsctables.New(lsctables.SearchSummaryTable)
    search_summary = return_search_summary(start_time, end_time,
                               len(sngl_inspiral_table), ifos, **kwargs)
    search_summary_table.append(search_summary)
    outdoc.childNodes[0].appendChild(search_summary_table)

    # write the xml doc to disk
    ligolw_utils.write_filename(outdoc, outputFile,
                                gz=outputFile.endswith('.gz'))
Example #4
0
    def to_coinc_xml_object(self, file_name):
        # FIXME: This function will only work with two ifos!!

        outdoc = ligolw.Document()
        outdoc.appendChild(ligolw.LIGO_LW())

        ifos = [ifo for ifo in self.sngl_files.keys()]
        proc_id = ligolw_process.register_to_xmldoc(outdoc, 'pycbc',
                     {}, ifos=ifos, comment='', version=pycbc_version.git_hash,
                     cvs_repository='pycbc/'+pycbc_version.git_branch,
                     cvs_entry_time=pycbc_version.date).process_id

        search_summ_table = lsctables.New(lsctables.SearchSummaryTable)
        coinc_h5file = self.coinc_file.h5file
        start_time = coinc_h5file['segments']['coinc']['start'][:].min()
        end_time = coinc_h5file['segments']['coinc']['end'][:].max()
        num_trigs = len(self.sort_arr)
        search_summary = return_search_summary(start_time, end_time,
                                                 num_trigs, ifos)
        search_summ_table.append(search_summary)
        outdoc.childNodes[0].appendChild(search_summ_table)

        sngl_inspiral_table = lsctables.New(lsctables.SnglInspiralTable)
        coinc_def_table = lsctables.New(lsctables.CoincDefTable)
        coinc_event_table = lsctables.New(lsctables.CoincTable)
        coinc_inspiral_table = lsctables.New(lsctables.CoincInspiralTable)
        coinc_event_map_table = lsctables.New(lsctables.CoincMapTable)
        time_slide_table = lsctables.New(lsctables.TimeSlideTable)

        # Set up time_slide table
        time_slide_id = lsctables.TimeSlideID(0)
        for ifo in ifos:
            time_slide_row = lsctables.TimeSlide()
            time_slide_row.instrument = ifo
            time_slide_row.time_slide_id = time_slide_id
            time_slide_row.offset = 0
            time_slide_row.process_id = proc_id
            time_slide_table.append(time_slide_row)

        # Set up coinc_definer table
        coinc_def_id = lsctables.CoincDefID(0)
        coinc_def_row = lsctables.CoincDef()
        coinc_def_row.search = "inspiral"
        coinc_def_row.description = "sngl_inspiral<-->sngl_inspiral coincidences"
        coinc_def_row.coinc_def_id = coinc_def_id
        coinc_def_row.search_coinc_type = 0
        coinc_def_table.append(coinc_def_row)

        bank_col_names = ['mass1', 'mass2', 'spin1z', 'spin2z']
        bank_col_vals = {}
        for name in bank_col_names:
            bank_col_vals[name] = self.get_bankfile_array(name)

        coinc_event_names = ['ifar', 'time1', 'fap', 'stat']
        coinc_event_vals = {}
        for name in coinc_event_names:
            coinc_event_vals[name] = self.get_coincfile_array(name)

        sngl_col_names = ['snr', 'chisq', 'chisq_dof', 'bank_chisq',
                          'bank_chisq_dof', 'cont_chisq', 'cont_chisq_dof',
                          'end_time', 'template_duration', 'coa_phase',
                          'sigmasq']
        sngl_col_vals = {}
        for name in sngl_col_names:
            sngl_col_vals[name] = self.get_snglfile_array_dict(name)

        for idx in xrange(len(self.sort_arr)):
            # Set up IDs and mapping values
            coinc_id = lsctables.CoincID(idx)

            # Set up sngls
            # FIXME: As two-ifo is hardcoded loop over all ifos
            sngl_combined_mchirp = 0
            sngl_combined_mtot = 0
            for ifo in ifos:
                sngl_id = self.trig_id[ifo][idx]
                event_id = lsctables.SnglInspiralID(sngl_id)
                sngl = return_empty_sngl()
                sngl.event_id = event_id
                sngl.ifo = ifo
                for name in sngl_col_names:
                    val = sngl_col_vals[name][ifo][idx]
                    if name == 'end_time':
                        sngl.set_end(LIGOTimeGPS(val))
                    else:
                        setattr(sngl, name, val)
                for name in bank_col_names:
                    val = bank_col_vals[name][idx]
                    setattr(sngl, name, val)
                sngl.mtotal, sngl.eta = pnutils.mass1_mass2_to_mtotal_eta(
                        sngl.mass1, sngl.mass2)
                sngl.mchirp, _ = pnutils.mass1_mass2_to_mchirp_eta(
                        sngl.mass1, sngl.mass2)
                sngl.eff_distance = (sngl.sigmasq)**0.5 / sngl.snr
                sngl_combined_mchirp += sngl.mchirp
                sngl_combined_mtot += sngl.mtotal

                sngl_inspiral_table.append(sngl)

                # Set up coinc_map entry
                coinc_map_row = lsctables.CoincMap()
                coinc_map_row.table_name = 'sngl_inspiral'
                coinc_map_row.coinc_event_id = coinc_id
                coinc_map_row.event_id = event_id
                coinc_event_map_table.append(coinc_map_row)

            sngl_combined_mchirp = sngl_combined_mchirp / len(ifos)
            sngl_combined_mtot = sngl_combined_mtot / len(ifos)

            # Set up coinc inspiral and coinc event tables
            coinc_event_row = lsctables.Coinc()
            coinc_inspiral_row = lsctables.CoincInspiral()
            coinc_event_row.coinc_def_id = coinc_def_id
            coinc_event_row.nevents = len(ifos)
            coinc_event_row.instruments = ','.join(ifos)
            coinc_inspiral_row.set_ifos(ifos)
            coinc_event_row.time_slide_id = time_slide_id
            coinc_event_row.process_id = proc_id
            coinc_event_row.coinc_event_id = coinc_id
            coinc_inspiral_row.coinc_event_id = coinc_id
            coinc_inspiral_row.mchirp = sngl_combined_mchirp
            coinc_inspiral_row.mass = sngl_combined_mtot
            coinc_inspiral_row.set_end(\
                                   LIGOTimeGPS(coinc_event_vals['time1'][idx]))
            coinc_inspiral_row.snr = coinc_event_vals['stat'][idx]
            coinc_inspiral_row.false_alarm_rate = coinc_event_vals['fap'][idx]
            coinc_inspiral_row.combined_far = 1./coinc_event_vals['ifar'][idx]
            # Transform to Hz
            coinc_inspiral_row.combined_far = \
                                    coinc_inspiral_row.combined_far / YRJUL_SI
            coinc_event_row.likelihood = 0.
            coinc_inspiral_row.minimum_duration = 0.
            coinc_event_table.append(coinc_event_row)
            coinc_inspiral_table.append(coinc_inspiral_row)

        outdoc.childNodes[0].appendChild(coinc_def_table)
        outdoc.childNodes[0].appendChild(coinc_event_table)
        outdoc.childNodes[0].appendChild(coinc_event_map_table)
        outdoc.childNodes[0].appendChild(time_slide_table)
        outdoc.childNodes[0].appendChild(coinc_inspiral_table)
        outdoc.childNodes[0].appendChild(sngl_inspiral_table)

        ligolw_utils.write_filename(outdoc, file_name)
Example #5
0
def make_exttrig_file(cp, ifos, sci_seg, out_dir):
    '''
    Make an ExtTrig xml file containing information on the external trigger

    Parameters
    ----------
    cp : pycbc.workflow.configuration.WorkflowConfigParser object
    The parsed configuration options of a pycbc.workflow.core.Workflow.

    ifos : str
    String containing the analysis interferometer IDs.

    sci_seg : glue.segments.segment
    The science segment for the analysis run.

    out_dir : str
    The output directory, destination for xml file.

    Returns
    -------
    xml_file : pycbc.workflow.File object
    The xml file with external trigger information.

    '''
    # Initialise objects
    xmldoc = ligolw.Document()
    xmldoc.appendChild(ligolw.LIGO_LW())
    tbl = lsctables.New(lsctables.ExtTriggersTable)
    cols = tbl.validcolumns
    xmldoc.childNodes[-1].appendChild(tbl)
    row = tbl.appendRow()

    # Add known attributes for this GRB
    setattr(row, "event_ra", float(cp.get("workflow", "ra")))
    setattr(row, "event_dec", float(cp.get("workflow", "dec")))
    setattr(row, "start_time", int(cp.get("workflow", "trigger-time")))
    setattr(row, "event_number_grb", str(cp.get("workflow", "trigger-name")))

    # Fill in all empty rows
    for entry in cols.keys():
        if not hasattr(row, entry):
            if cols[entry] in ['real_4', 'real_8']:
                setattr(row, entry, 0.)
            elif cols[entry] == 'int_4s':
                setattr(row, entry, 0)
            elif cols[entry] == 'lstring':
                setattr(row, entry, '')
            elif entry == 'process_id':
                row.process_id = ilwd.ilwdchar("external_trigger:process_id:0")
            elif entry == 'event_id':
                row.event_id = ilwd.ilwdchar("external_trigger:event_id:0")
            else:
                print("Column %s not recognized" % (entry), file=sys.stderr)
                raise ValueError

    # Save file
    xml_file_name = "triggerGRB%s.xml" % str(cp.get("workflow",
                                                    "trigger-name"))
    xml_file_path = os.path.join(out_dir, xml_file_name)
    utils.write_filename(xmldoc, xml_file_path)
    xml_file_url = urlparse.urljoin("file:",
                                    urllib.pathname2url(xml_file_path))
    xml_file = File(ifos, xml_file_name, sci_seg, file_url=xml_file_url)
    xml_file.PFN(xml_file_url, site="local")

    return xml_file
Example #6
0
    # And add these to the output file
    # Start with the segment summary
    summSegs = segments.segmentlist([workflow.analysis_time])
    sci_def_id = segmentdb_utils.add_to_segment_definer(outdoc, proc_id, ifo,
                                                      "CBC_DAYHOPE_SCIENCE", 0)
    sciok_def_id = segmentdb_utils.add_to_segment_definer(outdoc, proc_id, ifo,
                                                   "CBC_DAYHOPE_SCIENCE_OK", 0)
    sciavailable_def_id = segmentdb_utils.add_to_segment_definer(outdoc,
                              proc_id, ifo, "CBC_DAYHOPE_SCIENCE_AVAILABLE", 0)
    analysable_def_id = segmentdb_utils.add_to_segment_definer(outdoc, proc_id,
                                              ifo, "CBC_DAYHOPE_ANALYSABLE", 0)

    segmentdb_utils.add_to_segment(outdoc, proc_id, sci_def_id, sciSegs)
    segmentdb_utils.add_to_segment(outdoc, proc_id, sciok_def_id, sciokSegs)
    segmentdb_utils.add_to_segment(outdoc, proc_id, sciavailable_def_id,
                                   sciavailableSegs)
    segmentdb_utils.add_to_segment(outdoc, proc_id, analysable_def_id,
                                   analysableSegs)

    segmentdb_utils.add_to_segment_summary(outdoc, proc_id, sci_def_id,
                                           summSegs, comment='')
    segmentdb_utils.add_to_segment_summary(outdoc, proc_id, sciok_def_id,
                                           summSegs, comment='')
    segmentdb_utils.add_to_segment_summary(outdoc, proc_id, sciavailable_def_id,
                                           summSegs, comment='')
    segmentdb_utils.add_to_segment_summary(outdoc, proc_id, analysable_def_id,
                                           summSegs, comment='')

ligolw_utils.write_filename(outdoc, "SUMMARY.xml")

Example #7
0
def output_sngl_inspiral_table(outputFile,
                               tempBank,
                               metricParams,
                               ethincaParams,
                               programName="",
                               optDict=None,
                               outdoc=None,
                               **kwargs):
    """
    Function that converts the information produced by the various pyCBC bank
    generation codes into a valid LIGOLW xml file containing a sngl_inspiral
    table and outputs to file.

    Parameters
    -----------
    outputFile : string
        Name of the file that the bank will be written to
    tempBank : iterable
        Each entry in the tempBank iterable should be a sequence of
        [mass1,mass2,spin1z,spin2z] in that order.
    metricParams : metricParameters instance
        Structure holding all the options for construction of the metric
        and the eigenvalues, eigenvectors and covariance matrix
        needed to manipulate the space.
    ethincaParams: {ethincaParameters instance, None}
        Structure holding options relevant to the ethinca metric computation
        including the upper frequency cutoff to be used for filtering.
        NOTE: The computation is currently only valid for non-spinning systems
        and uses the TaylorF2 approximant.
    programName (key-word-argument) : string
        Name of the executable that has been run
    optDict (key-word argument) : dictionary
        Dictionary of the command line arguments passed to the program
    outdoc (key-word argument) : ligolw xml document
        If given add template bank to this representation of a xml document and
        write to disk. If not given create a new document.
    kwargs : key-word arguments
        All other key word arguments will be passed directly to
        ligolw_process.register_to_xmldoc
    """
    if optDict is None:
        optDict = {}
    if outdoc is None:
        outdoc = ligolw.Document()
        outdoc.appendChild(ligolw.LIGO_LW())

    # get IFO to put in search summary table
    ifos = []
    if 'channel_name' in optDict.keys():
        if optDict['channel_name'] is not None:
            ifos = [optDict['channel_name'][0:2]]

    proc_id = ligolw_process.register_to_xmldoc(outdoc,
                                                programName,
                                                optDict,
                                                ifos=ifos,
                                                **kwargs).process_id
    sngl_inspiral_table = convert_to_sngl_inspiral_table(tempBank, proc_id)
    # Calculate Gamma components if needed
    if ethincaParams is not None:
        if ethincaParams.doEthinca:
            for sngl in sngl_inspiral_table:
                # Set tau_0 and tau_3 values needed for the calculation of
                # ethinca metric distances
                (sngl.tau0, sngl.tau3) = pnutils.mass1_mass2_to_tau0_tau3(
                    sngl.mass1, sngl.mass2, metricParams.f0)
                fMax_theor, GammaVals = calculate_ethinca_metric_comps(
                    metricParams,
                    ethincaParams,
                    sngl.mass1,
                    sngl.mass2,
                    spin1z=sngl.spin1z,
                    spin2z=sngl.spin2z,
                    full_ethinca=ethincaParams.full_ethinca)
                # assign the upper frequency cutoff and Gamma0-5 values
                sngl.f_final = fMax_theor
                for i in xrange(len(GammaVals)):
                    setattr(sngl, "Gamma" + str(i), GammaVals[i])
        # If Gamma metric components are not wanted, assign f_final from an
        # upper frequency cutoff specified in ethincaParams
        elif ethincaParams.cutoff is not None:
            for sngl in sngl_inspiral_table:
                sngl.f_final = pnutils.frequency_cutoff_from_name(
                    ethincaParams.cutoff, sngl.mass1, sngl.mass2, sngl.spin1z,
                    sngl.spin2z)

    # set per-template low-frequency cutoff
    if 'f_low_column' in optDict and 'f_low' in optDict and \
            optDict['f_low_column'] is not None:
        for sngl in sngl_inspiral_table:
            setattr(sngl, optDict['f_low_column'], optDict['f_low'])

    outdoc.childNodes[0].appendChild(sngl_inspiral_table)

    # get times to put in search summary table
    start_time = 0
    end_time = 0
    if 'gps_start_time' in optDict.keys() and 'gps_end_time' in optDict.keys():
        start_time = optDict['gps_start_time']
        end_time = optDict['gps_end_time']

    # make search summary table
    search_summary_table = lsctables.New(lsctables.SearchSummaryTable)
    search_summary = return_search_summary(start_time, end_time,
                                           len(sngl_inspiral_table), ifos,
                                           **kwargs)
    search_summary_table.append(search_summary)
    outdoc.childNodes[0].appendChild(search_summary_table)

    # write the xml doc to disk
    ligolw_utils.write_filename(outdoc,
                                outputFile,
                                gz=outputFile.endswith('.gz'))
Example #8
0
    def save(self, path, group=None, ifo='P1'):
        """
        Save frequency series to a Numpy .npy, hdf, or text file. The first column
        contains the sample frequencies, the second contains the values.
        In the case of a complex frequency series saved as text, the imaginary
        part is written as a third column.  When using hdf format, the data is stored
        as a single vector, along with relevant attributes.

        Parameters
        ----------
        path: string
            Destination file path. Must end with either .hdf, .npy or .txt.
            
        group: string 
            Additional name for internal storage use. Ex. hdf storage uses
            this as the key value.

        Raises
        ------
        ValueError
            If path does not end in .npy or .txt.
        """

        ext = _os.path.splitext(path)[1]
        if ext == '.npy':
            output = _numpy.vstack((self.sample_frequencies.numpy(),
                                    self.numpy())).T
            _numpy.save(path, output)
        elif ext == '.txt':
            if self.kind == 'real':
                output = _numpy.vstack((self.sample_frequencies.numpy(),
                                        self.numpy())).T
            elif self.kind == 'complex':
                output = _numpy.vstack((self.sample_frequencies.numpy(),
                                        self.numpy().real,
                                        self.numpy().imag)).T
            _numpy.savetxt(path, output)
        elif ext == '.xml' or path.endswith('.xml.gz'):
            from pycbc.io.live import make_psd_xmldoc
            from pycbc.ligolw import utils

            if self.kind != 'real':
                raise ValueError('XML only supports real frequency series')
            output = self.lal()
            # When writing in this format we must *not* have the 0 values at
            # frequencies less than flow. To resolve this we set the first
            # non-zero value < flow.
            data_lal = output.data.data
            first_idx = _numpy.argmax(data_lal>0)
            if not first_idx == 0:
                data_lal[:first_idx] = data_lal[first_idx]
            psddict = {ifo: output}
            utils.write_filename(make_psd_xmldoc(psddict), path,
                                 gz=path.endswith(".gz"))
        elif ext =='.hdf':
            key = 'data' if group is None else group
            f = h5py.File(path)
            ds = f.create_dataset(key, data=self.numpy(), compression='gzip',
                                  compression_opts=9, shuffle=True)
            ds.attrs['epoch'] = float(self.epoch)
            ds.attrs['delta_f'] = float(self.delta_f)
        else:
            raise ValueError('Path must end with .npy, .txt, .xml, .xml.gz '
                             'or .hdf')
Example #9
0
    def save(self, path, group=None, ifo='P1'):
        """
        Save frequency series to a Numpy .npy, hdf, or text file. The first column
        contains the sample frequencies, the second contains the values.
        In the case of a complex frequency series saved as text, the imaginary
        part is written as a third column.  When using hdf format, the data is stored
        as a single vector, along with relevant attributes.

        Parameters
        ----------
        path: string
            Destination file path. Must end with either .hdf, .npy or .txt.
            
        group: string 
            Additional name for internal storage use. Ex. hdf storage uses
            this as the key value.

        Raises
        ------
        ValueError
            If path does not end in .npy or .txt.
        """

        ext = _os.path.splitext(path)[1]
        if ext == '.npy':
            output = _numpy.vstack(
                (self.sample_frequencies.numpy(), self.numpy())).T
            _numpy.save(path, output)
        elif ext == '.txt':
            if self.kind == 'real':
                output = _numpy.vstack(
                    (self.sample_frequencies.numpy(), self.numpy())).T
            elif self.kind == 'complex':
                output = _numpy.vstack(
                    (self.sample_frequencies.numpy(), self.numpy().real,
                     self.numpy().imag)).T
            _numpy.savetxt(path, output)
        elif ext == '.xml' or path.endswith('.xml.gz'):
            from pycbc.io.live import make_psd_xmldoc
            from pycbc.ligolw import utils

            if self.kind != 'real':
                raise ValueError('XML only supports real frequency series')
            output = self.lal()
            # When writing in this format we must *not* have the 0 values at
            # frequencies less than flow. To resolve this we set the first
            # non-zero value < flow.
            data_lal = output.data.data
            first_idx = _numpy.argmax(data_lal > 0)
            if not first_idx == 0:
                data_lal[:first_idx] = data_lal[first_idx]
            psddict = {ifo: output}
            utils.write_filename(make_psd_xmldoc(psddict),
                                 path,
                                 gz=path.endswith(".gz"))
        elif ext == '.hdf':
            key = 'data' if group is None else group
            f = h5py.File(path)
            ds = f.create_dataset(key,
                                  data=self.numpy(),
                                  compression='gzip',
                                  compression_opts=9,
                                  shuffle=True)
            ds.attrs['epoch'] = float(self.epoch)
            ds.attrs['delta_f'] = float(self.delta_f)
        else:
            raise ValueError('Path must end with .npy, .txt, .xml, .xml.gz '
                             'or .hdf')
Example #10
0
    segmentdb_utils.add_to_segment(outdoc, proc_id, sci_def_id, sciSegs)
    segmentdb_utils.add_to_segment(outdoc, proc_id, sciok_def_id, sciokSegs)
    segmentdb_utils.add_to_segment(outdoc, proc_id, sciavailable_def_id,
                                   sciavailableSegs)
    segmentdb_utils.add_to_segment(outdoc, proc_id, analysable_def_id,
                                   analysableSegs)

    segmentdb_utils.add_to_segment_summary(outdoc,
                                           proc_id,
                                           sci_def_id,
                                           summSegs,
                                           comment='')
    segmentdb_utils.add_to_segment_summary(outdoc,
                                           proc_id,
                                           sciok_def_id,
                                           summSegs,
                                           comment='')
    segmentdb_utils.add_to_segment_summary(outdoc,
                                           proc_id,
                                           sciavailable_def_id,
                                           summSegs,
                                           comment='')
    segmentdb_utils.add_to_segment_summary(outdoc,
                                           proc_id,
                                           analysable_def_id,
                                           summSegs,
                                           comment='')

ligolw_utils.write_filename(outdoc, "SUMMARY.xml")
Example #11
0
def make_exttrig_file(cp, ifos, sci_seg, out_dir):
    '''
    Make an ExtTrig xml file containing information on the external trigger

    Parameters
    ----------
    cp : pycbc.workflow.configuration.WorkflowConfigParser object
    The parsed configuration options of a pycbc.workflow.core.Workflow.

    ifos : str
    String containing the analysis interferometer IDs.

    sci_seg : glue.segments.segment
    The science segment for the analysis run.

    out_dir : str
    The output directory, destination for xml file.

    Returns
    -------
    xml_file : pycbc.workflow.File object
    The xml file with external trigger information.

    '''
    # Initialise objects
    xmldoc = ligolw.Document()
    xmldoc.appendChild(ligolw.LIGO_LW())
    tbl = lsctables.New(lsctables.ExtTriggersTable)
    cols = tbl.validcolumns
    xmldoc.childNodes[-1].appendChild(tbl)
    row = tbl.appendRow()

    # Add known attributes for this GRB
    setattr(row, "event_ra", float(cp.get("workflow", "ra")))
    setattr(row, "event_dec", float(cp.get("workflow", "dec")))
    setattr(row, "start_time", int(cp.get("workflow", "trigger-time")))
    setattr(row, "event_number_grb", str(cp.get("workflow", "trigger-name")))

    # Fill in all empty rows
    for entry in cols.keys():
        if not hasattr(row, entry):
            if cols[entry] in ['real_4','real_8']:
                setattr(row,entry,0.)
            elif cols[entry] == 'int_4s':
                setattr(row,entry,0)
            elif cols[entry] == 'lstring':
                setattr(row,entry,'')
            elif entry == 'process_id':
                row.process_id = ilwd.ilwdchar("external_trigger:process_id:0")
            elif entry == 'event_id':
                row.event_id = ilwd.ilwdchar("external_trigger:event_id:0")
            else:
                print("Column %s not recognized" %(entry), file=sys.stderr)
                raise ValueError

    # Save file
    xml_file_name = "triggerGRB%s.xml" % str(cp.get("workflow",
                                                    "trigger-name"))
    xml_file_path = os.path.join(out_dir, xml_file_name)
    utils.write_filename(xmldoc, xml_file_path)
    xml_file_url = urlparse.urljoin("file:", urllib.pathname2url(xml_file_path))
    xml_file = File(ifos, xml_file_name, sci_seg, file_url=xml_file_url)
    xml_file.PFN(xml_file_url, site="local")

    return xml_file
Example #12
0
    def upload(
        self,
        fname,
        psds,
        low_frequency_cutoff,
        testing=True,
        extra_strings=None,
    ):
        """Upload this trigger to gracedb

        Parameters
        ----------
        fname: str
            The name to give the xml file associated with this trigger
        pds: dict of pybc.types.FrequencySeries
            A ifo keyed dictionary of psds to be uploaded in association
        with this trigger.
        low_frequency_cutoff: float
            The low frequency cutoff of the psds.
        testing: bool
            Switch to determine if the upload should be sent to gracedb as a
        test trigger (True) or a production trigger (False)
        """
        from ligo.gracedb.rest import GraceDb

        # first of all, make sure the event and PSDs are saved on disk
        # as GraceDB operations can fail later

        self.save(fname)

        psds_lal = {}
        for ifo in psds:
            psd = psds[ifo]
            kmin = int(low_frequency_cutoff / psd.delta_f)
            fseries = lal.CreateREAL8FrequencySeries(
                "psd", psd.epoch, low_frequency_cutoff, psd.delta_f,
                lal.StrainUnit**2 / lal.HertzUnit,
                len(psd) - kmin)
            fseries.data.data = psd.numpy()[kmin:] / pycbc.DYN_RANGE_FAC**2.0
            psds_lal[ifo] = fseries
        psd_xmldoc = make_psd_xmldoc(psds_lal)
        psd_xml_path = os.path.splitext(fname)[0] + '-psd.xml.gz'
        ligolw_utils.write_filename(psd_xmldoc, psd_xml_path, gz=True)

        if self.upload_snr_series:
            snr_series_fname = os.path.splitext(fname)[0] + '.hdf'
            for ifo in self.snr_series:
                self.snr_series[ifo].save(snr_series_fname,
                                          group='%s/snr' % ifo)
                self.snr_series_psd[ifo].save(snr_series_fname,
                                              group='%s/psd' % ifo)

        # try connecting to GraceDB
        try:
            gracedb = GraceDb(self.gracedb_server) \
                    if self.gracedb_server is not None else GraceDb()
        except Exception as exc:
            logging.error('Cannot connect to GraceDB')
            logging.error(str(exc))
            logging.error('Carrying on, but event %s will NOT be uploaded!',
                          fname)
            return None

        # create GraceDB event
        group = 'Test' if testing else 'CBC'
        try:
            r = gracedb.createEvent(group, "pycbc", fname, "AllSky").json()
        except Exception as exc:
            logging.error('Cannot create GraceDB event')
            logging.error(str(exc))
            logging.error('Carrying on, but event %s will NOT be uploaded!',
                          fname)
            return None
        logging.info("Uploaded event %s", r["graceid"])

        if self.is_hardware_injection:
            try:
                gracedb.writeLabel(r['graceid'], 'INJ')
            except Exception as exc:
                logging.error("Cannot tag event %s as an injection",
                              r["graceid"])
                logging.error(str(exc))
            logging.info("Tagging event %s as an injection", r["graceid"])

        # upload PSDs
        try:
            gracedb.writeLog(r["graceid"],
                             "PyCBC PSD estimate from the time of event",
                             "psd.xml.gz",
                             open(psd_xml_path, "rb").read(), "psd").json()
        except Exception as exc:
            logging.error("Cannot upload PSDs for event %s", r["graceid"])
            logging.error(str(exc))
        logging.info("Uploaded PSDs for event %s", r["graceid"])

        # add other tags and comments
        try:
            gracedb.writeLog(
                r["graceid"],
                "Using PyCBC code hash %s" % pycbc_version.git_hash).json()
            extra_strings = [] if extra_strings is None else extra_strings
            for text in extra_strings:
                gracedb.writeLog(r["graceid"], text).json()
        except Exception as exc:
            logging.error("Cannot write comments for event %s", r["graceid"])
            logging.error(str(exc))

        # upload SNR series in HDF format
        if self.upload_snr_series:
            try:
                gracedb.writeFile(r['graceid'], snr_series_fname)
            except Exception as exc:
                logging.error("Cannot upload HDF SNR series for event %s",
                              r["graceid"])
                logging.error(str(exc))

        return r['graceid']
Example #13
0
    def upload(self, fname, psds, low_frequency_cutoff,
               testing=True,
               extra_strings=None,
               ):
        """Upload this trigger to gracedb

        Parameters
        ----------
        fname: str
            The name to give the xml file associated with this trigger
        pds: dict of pybc.types.FrequencySeries
            A ifo keyed dictionary of psds to be uploaded in association
        with this trigger.
        low_frequency_cutoff: float
            The low frequency cutoff of the psds.
        testing: bool
            Switch to determine if the upload should be sent to gracedb as a
        test trigger (True) or a production trigger (False)
        """
        from ligo.gracedb.rest import GraceDb

        # first of all, make sure the event and PSDs are saved on disk
        # as GraceDB operations can fail later

        self.save(fname)

        psds_lal = {}
        for ifo in psds:
            psd = psds[ifo]
            kmin = int(low_frequency_cutoff / psd.delta_f)
            fseries = lal.CreateREAL8FrequencySeries(
                "psd", psd.epoch, low_frequency_cutoff, psd.delta_f,
                lal.StrainUnit**2 / lal.HertzUnit, len(psd) - kmin)
            fseries.data.data = psd.numpy()[kmin:] / pycbc.DYN_RANGE_FAC ** 2.0
            psds_lal[ifo] = fseries
        psd_xmldoc = make_psd_xmldoc(psds_lal)
        psd_xml_path = os.path.splitext(fname)[0] + '-psd.xml.gz'
        ligolw_utils.write_filename(psd_xmldoc, psd_xml_path, gz=True)

        if self.upload_snr_series:
            snr_series_fname = os.path.splitext(fname)[0] + '.hdf'
            for ifo in self.snr_series:
                self.snr_series[ifo].save(snr_series_fname,
                                          group='%s/snr' % ifo)
                self.snr_series_psd[ifo].save(snr_series_fname,
                                              group='%s/psd' % ifo)

        # try connecting to GraceDB
        try:
            gracedb = GraceDb(self.gracedb_server) \
                    if self.gracedb_server is not None else GraceDb()
        except Exception as exc:
            logging.error('Cannot connect to GraceDB')
            logging.error(str(exc))
            logging.error('Carrying on, but event %s will NOT be uploaded!', fname)
            return None

        # create GraceDB event
        group = 'Test' if testing else 'CBC'
        try:
            r = gracedb.createEvent(group, "pycbc", fname, "AllSky").json()
        except Exception as exc:
            logging.error('Cannot create GraceDB event')
            logging.error(str(exc))
            logging.error('Carrying on, but event %s will NOT be uploaded!', fname)
            return None
        logging.info("Uploaded event %s", r["graceid"])

        if self.is_hardware_injection:
            try:
                gracedb.writeLabel(r['graceid'], 'INJ')
            except Exception as exc:
                logging.error("Cannot tag event %s as an injection", r["graceid"])
                logging.error(str(exc))
            logging.info("Tagging event %s as an injection", r["graceid"])

        # upload PSDs
        try:
            gracedb.writeLog(r["graceid"],
                             "PyCBC PSD estimate from the time of event",
                             "psd.xml.gz", open(psd_xml_path, "rb").read(),
                             "psd").json()
        except Exception as exc:
            logging.error("Cannot upload PSDs for event %s", r["graceid"])
            logging.error(str(exc))
        logging.info("Uploaded PSDs for event %s", r["graceid"])

        # add other tags and comments
        try:
            gracedb.writeLog(r["graceid"],
                "Using PyCBC code hash %s" % pycbc_version.git_hash).json()
            extra_strings = [] if extra_strings is None else extra_strings
            for text in extra_strings:
                gracedb.writeLog(r["graceid"], text).json()
        except Exception as exc:
            logging.error("Cannot write comments for event %s", r["graceid"])
            logging.error(str(exc))

        # upload SNR series in HDF format
        if self.upload_snr_series:
            try:
                gracedb.writeFile(r['graceid'], snr_series_fname)
            except Exception as exc:
                logging.error("Cannot upload HDF SNR series for event %s",
                              r["graceid"])
                logging.error(str(exc))

        return r['graceid']