def _sync(self, obj): for dbiso in obj.isotopes: r = dbiso.results[-1] uv = r.Iso ee = r.IsoEr bv = r.Bkgd be = r.BkgdEr key = dbiso.Label n = dbiso.NumCnts iso = Isotope(name=key, value=uv, error=ee, n=n) det =dbiso.detector iso.ic_factor=ufloat(det.ICFactor, det.ICFactorEr) iso.fit = r.fit.Label.lower() iso.baseline = Baseline(name=key, reverse_unpack=True, dbrecord=dbiso.baseline, unpack=True, unpacker=lambda x: x.PeakTimeBlob, error_type='SEM', fit='average') iso.baseline.set_filter_outliers_dict() iso.blank = Blank(name=key, value=bv, error=be) self.isotopes[key] = iso
def _sync(self, obj): for dbiso in obj.isotopes: r = dbiso.results[-1] uv = r.Iso ee = r.IsoEr bv = r.Bkgd be = r.BkgdEr key = dbiso.Label iso = Isotope(name=key, value=uv, error=ee) iso.baseline = Baseline(name=key, reverse_unpack=True, dbrecord=dbiso.baseline, unpacker=lambda x: x.PeakTimeBlob, fit='average_SEM') iso.blank = Blank(name=key, value=bv, error=be) self.isotopes[key] = iso
def _sync(self, obj): arar = obj.araranalyses[-1] if arar: self.j = ufloat(arar.JVal, arar.JEr) self.age = arar.Age self.age_err = arar.ErrAge self.age_err_wo_j = arar.ErrAgeWOErInJ self.rad40_percent = ufloat(arar.PctRad, arar.PctRadEr) for dbiso in obj.isotopes: r = dbiso.results[-1] uv = r.Iso ee = r.IsoEr bv = r.Bkgd be = r.BkgdEr key = dbiso.Label n = dbiso.NumCnts iso = Isotope(name=key, value=uv, error=ee, n=n) det =dbiso.detector iso.ic_factor=ufloat(det.ICFactor, det.ICFactorEr) iso.fit = r.fit.Label.lower() iso.baseline = Baseline(name=key, reverse_unpack=True, dbrecord=dbiso.baseline, unpack=True, unpacker=lambda x: x.PeakTimeBlob, error_type='SEM', fit='average') iso.baseline.set_filter_outliers_dict() iso.blank = Blank(name=key, value=bv, error=be) self.isotopes[key] = iso