Example #1
0
 def log_epoch_stats(self,
                     cur_epoch,
                     writer,
                     params=0,
                     flops=0,
                     is_master=False):
     stats = self.get_epoch_stats(cur_epoch)
     lu.log_json_stats(stats,
                       cur_epoch,
                       writer,
                       is_epoch=False,
                       params=params,
                       flops=flops,
                       is_master=is_master)
Example #2
0
def compute_precise_time(model, loss_fun):
    """Computes precise time."""
    # Generate a dummy mini-batch
    im_size = cfg.TRAIN.IM_SIZE
    inputs = torch.rand(cfg.PREC_TIME.BATCH_SIZE, 3, im_size, im_size)
    labels = torch.zeros(cfg.PREC_TIME.BATCH_SIZE, dtype=torch.int64)
    # Copy the data to the GPU
    inputs = inputs.cuda(non_blocking=False)
    labels = labels.cuda(non_blocking=False)
    # Compute precise time
    fw_test_time = compute_fw_test_time(model, inputs)
    fw_time, bw_time = compute_fw_bw_time(model, loss_fun, inputs, labels)
    # Log precise time
    lu.log_json_stats({
        "prec_test_fw_time": fw_test_time,
        "prec_train_fw_time": fw_time,
        "prec_train_bw_time": bw_time,
        "prec_train_fw_bw_time": fw_time + bw_time,
    })
Example #3
0
 def log_epoch_stats(self, cur_epoch):
     stats = self.get_epoch_stats(cur_epoch)
     lu.log_json_stats(stats)
Example #4
0
 def log_iter_stats(self, cur_epoch, cur_iter):
     if (cur_iter + 1) % cfg.LOG_PERIOD != 0:
         return
     stats = self.get_iter_stats(cur_epoch, cur_iter)
     lu.log_json_stats(stats)