Example #1
0
    def optimal_machines_grid(self, X, y, line_points=200, info=False):
        """
        Find the optimal epsilon and machine-combination for a single query point for the COBRA predictor.

        Parameteres
        -----------

        X: array-like, [n_features]
            Vector for which we want optimal machines and epsilon values

        y: float
            Target value for query to compare.

        line_points: integer, optional
            Number of epsilon values to traverse the grid.

        info: bool, optional
            Returns MSE dictionary for each epsilon/machine value.

        Returns
        -------

        MSE: dictionary mapping (machine combination, epsilon) with mean squared errors
        opt: optimal epislon/machine combination

        """

        # code to find maximum and minimum distance between predictions to create grid
        a, size = sorted(self.aggregate.all_predictions_), len(
            self.aggregate.all_predictions_)
        res = [a[i + 1] - a[i] for i in range(size) if i + 1 < size]
        emin = min(res)
        emax = max(a) - min(a)
        erange = np.linspace(emin, emax, line_points)
        n_machines = np.arange(1, len(self.aggregate.estimators_) + 1)
        MSE = {}

        for epsilon in erange:
            for num in n_machines:
                machine_names = self.aggregate.estimators_.keys()
                use = list(itertools.combinations(machine_names, num))
                for combination in use:
                    machine = Cobra(random_state=self.random_state,
                                    epsilon=epsilon)
                    machine.fit(self.aggregate.X_,
                                self.aggregate.y_,
                                default=False)
                    machine.split_data()
                    machine.load_default(machine_list=combination)
                    machine.load_machine_predictions()
                    result = machine.predict(X.reshape(1, -1))
                    MSE[(combination, epsilon)] = np.square(y - result)

        if info:
            return MSE
        opt = min(MSE, key=MSE.get)
        return opt, MSE[opt]
Example #2
0
    def optimal_machines(self, X, y, single=False, epsilon=None, info=False):
        """
        Find the optimal combination of machines for testing data for the COBRA predictor.

        Parameteres
        -----------

        X: array-like, [n_features]
            Vector for which we want optimal machine combinations.

        y: float
            Target value for query to compare.

        single: boolean, optional
            Option to calculate optimal machine combinations for a single query point instead.

        info: bool, optional
            Returns MSE dictionary for each machine combination value

        epsilon: float, optional
            fixed epsilon value to help determine optimal machines.

        Returns
        -------

        MSE: dictionary mapping machines with mean squared errors
        opt: optimal machines combination

        """
        if epsilon is None:
            epsilon = self.aggregate.epsilon

        n_machines = np.arange(1, len(self.aggregate.estimators_) + 1)
        MSE = {}
        for num in n_machines:
            machine_names = self.aggregate.estimators_.keys()
            use = list(itertools.combinations(machine_names, num))
            for combination in use:
                machine = Cobra(random_state=self.random_state,
                                epsilon=epsilon)
                machine.fit(self.aggregate.X_,
                            self.aggregate.y_,
                            default=False)
                machine.split_data()
                machine.load_default(machine_list=combination)
                machine.load_machine_predictions()
                if single:
                    result = machine.predict(X.reshape(1, -1))
                    MSE[combination] = np.square(y - result)
                else:
                    results = machine.predict(X)
                    MSE[combination] = (mean_squared_error(y, results))

        if info:
            return MSE
        opt = min(MSE, key=MSE.get)
        return opt, MSE[opt]
Example #3
0
    def boxplot(self, reps=100, info=False):
        """
        Plots boxplots of machines.

        Parameters
        ----------
        reps: int, optional
            Number of times to repeat experiments for boxplot.

        info: boolean, optional
            Returns data 

        """
        if type(self.aggregate) is Cobra:

            MSE = {k: [] for k, v in self.aggregate.machines_.items()}
            MSE["COBRA"] = []
            for i in range(0, reps):
                cobra = Cobra(random_state=self.random_state, epsilon=self.aggregate.epsilon)
                X, y = shuffle(self.aggregate.X_, self.aggregate.y_, random_state=self.aggregate.random_state)
                cobra.fit(X, y, default=False)
                cobra.split_data(shuffle_data=True)

                for machine in self.aggregate.machines_:
                    self.aggregate.machines_[machine].fit(cobra.X_k_, cobra.y_k_)
                    cobra.load_machine(machine, self.aggregate.machines_[machine])

                cobra.load_machine_predictions()
                X_test, y_test = shuffle(self.X_test, self.y_test, random_state=self.aggregate.random_state)

                for machine in cobra.machines_:
                    MSE[machine].append(mean_squared_error(y_test, cobra.machines_[machine].predict(X_test)))
                MSE["COBRA"].append(mean_squared_error(y_test, cobra.predict(X_test)))

            data, labels = [], []
            for machine in MSE:
                data.append(MSE[machine])
                labels.append(machine)

        if type(self.aggregate) is Ewa:

            MSE = {k: [] for k, v in self.aggregate.machines_.items()}
            MSE["EWA"] = []
            for i in range(0, reps):
                ewa = Ewa(random_state=self.random_state, beta=self.aggregate.beta)
                X, y = shuffle(self.aggregate.X_, self.aggregate.y_, random_state=self.aggregate.random_state)
                ewa.fit(X, y, default=False)
                ewa.split_data(shuffle_data=True)

                for machine in self.aggregate.machines_:
                    self.aggregate.machines_[machine].fit(ewa.X_k_, ewa.y_k_)
                    ewa.load_machine(machine, self.aggregate.machines_[machine])

                ewa.load_machine_weights(self.aggregate.beta)
                X_test, y_test = shuffle(self.X_test, self.y_test, random_state=self.aggregate.random_state)
                for machine in ewa.machines_:
                    MSE[machine].append(mean_squared_error(y_test, ewa.machines_[machine].predict(X_test)))
                MSE["EWA"].append(mean_squared_error(y_test, ewa.predict(X_test)))

            data, labels = [], []
            for machine in MSE:
                data.append(MSE[machine])
                labels.append(machine)

        if type(self.aggregate) is ClassifierCobra:

            errors = {k: [] for k, v in self.aggregate.machines_.items()}
            errors["ClassifierCobra"] = []
            for i in range(0, reps):
                cc = ClassifierCobra(random_state=self.random_state)
                X, y = shuffle(self.aggregate.X_, self.aggregate.y_, random_state=self.aggregate.random_state)
                cc.fit(X, y, default=False)
                cc.split_data(shuffle_data=True)

                for machine in self.aggregate.machines_:
                    self.aggregate.machines_[machine].fit(cc.X_k_, cc.y_k_)
                    cc.load_machine(machine, self.aggregate.machines_[machine])

                cc.load_machine_predictions()
                X_test, y_test = shuffle(self.X_test, self.y_test, random_state=self.aggregate.random_state)
                for machine in cc.machines_: 
                    errors[machine].append(1 - accuracy_score(y_test, cc.machines_[machine].predict(X_test)))
                errors["ClassifierCobra"].append(1 - accuracy_score(y_test, cc.predict(X_test)))

            data, labels = [], []
            for machine in errors:
                data.append(errors[machine])
                labels.append(machine)


        plt.figure(figsize=(self.plot_size, self.plot_size))
        plt.boxplot(data, labels=labels)
        plt.show()
        
        if info:
            return data        
Example #4
0
    def optimal_split(self,
                      X,
                      y,
                      split=None,
                      epsilon=None,
                      info=False,
                      graph=False):
        """
        Find the optimal combination split (D_k, D_l) for fixed epsilon value for the COBRA predictor.

        Parameteres
        -----------

        X: array-like, [n_features]
            Vector for which we want for optimal split.

        y: float
            Target value for query to compare.

        epsilon: float, optional.
            fixed epsilon value to help determine optimal machines.

        split: list, optional.
            D_k, D_l break-up to calculate MSE

        info: bool, optional.
            Returns MSE dictionary for each split.

        graph: bool, optional.
            Plots graph of MSE vs split

        Returns
        -------

        MSE: dictionary mapping split with mean squared errors
        opt: optimal epsilon value

        """
        if epsilon is None:
            epsilon = self.aggregate.epsilon

        if split is None:
            split = [(0.20, 0.80), (0.40, 0.60), (0.50, 0.50), (0.60, 0.40),
                     (0.80, 0.20)]

        MSE = {}
        for k, l in split:
            machine = Cobra(random_state=self.random_state, epsilon=epsilon)
            machine.fit(self.aggregate.X_, self.aggregate.y_, default=False)
            machine.split_data(int(k * len(self.aggregate.X_)),
                               int((k + l) * len(self.aggregate.X_)))
            machine.load_default()
            machine.load_machine_predictions()
            results = machine.predict(X)
            MSE[(k, l)] = (mean_squared_error(y, results))

        if graph:
            import matplotlib.pyplot as plt
            ratio, mse = [], []
            for value in split:
                ratio.append(value[0])
                mse.append(MSE[value])
            plt.plot(ratio, mse)

        if info:
            return MSE
        opt = min(MSE, key=MSE.get)
        return opt, MSE[opt]
Example #5
0
    def boxplot(self, reps=100, info=False, dataframe=None, kind="normal"):
        """
        Plots boxplots of machines.

        Parameters
        ----------
        reps: int, optional
            Number of times to repeat experiments for boxplot.

        info: boolean, optional
            Returns data 

        """

        kwargs = self.kwargs
        if dataframe is None:
            if type(self.aggregate) is Cobra:

                MSE = {k: [] for k, v in self.estimators.items()}
                MSE["Cobra"] = []
                for i in range(0, reps):
                    cobra = Cobra(epsilon=self.aggregate.epsilon)
                    X, y = shuffle(self.aggregate.X_, self.aggregate.y_)
                    cobra.fit(X, y, default=False)
                    cobra.split_data(shuffle_data=True)

                    for machine in self.aggregate.estimators_:
                        self.aggregate.estimators_[machine].fit(cobra.X_k_, cobra.y_k_)
                        cobra.load_machine(machine, self.aggregate.estimators_[machine])

                    cobra.load_machine_predictions()

                    for machine in self.estimators:
                        if "Cobra" in machine:
                            self.estimators[machine].fit(X, y)
                        else:
                            self.estimators[machine].fit(cobra.X_k_, cobra.y_k_)
                        try:
                            if type(self.estimators[machine]) == KernelCobra:
                                preds = self.estimators[machine].predict(self.X_test, bandwidth=kwargs["bandwidth_kernel"])
                            else:
                                preds = self.estimators[machine].predict(self.X_test)
                        except KeyError:
                            preds = self.estimators[machine].predict(self.X_test)                      
                        
                        MSE[machine].append(mean_squared_error(self.y_test, preds))

                    MSE["Cobra"].append(mean_squared_error(self.y_test, cobra.predict(self.X_test)))

                try:
                    dataframe = pd.DataFrame(data=MSE)
                except ValueError:
                    return MSE

            if type(self.aggregate) is KernelCobra:

                MSE = {k: [] for k, v in self.estimators.items()}
                MSE["KernalCobra"] = []
                for i in range(0, reps):
                    kernel = KernelCobra()
                    X, y = shuffle(self.aggregate.X_, self.aggregate.y_)
                    kernel.fit(X, y, default=False)
                    kernel.split_data(shuffle_data=True)

                    for machine in self.aggregate.estimators_:
                        self.aggregate.estimators_[machine].fit(kernel.X_k_, kernel.y_k_)
                        kernel.load_machine(machine, self.aggregate.estimators_[machine])

                    kernel.load_machine_predictions()

                    for machine in self.estimators:
                        if "Cobra" in machine:
                            self.estimators[machine].fit(X, y)
                        else:
                            self.estimators[machine].fit(cobra.X_k_, cobra.y_k_)
                        
                        try:
                            if type(self.estimators[machine]) == KernelCobra:
                                preds = self.estimators[machine].predict(self.X_test, bandwidth=kwargs["bandwidth_kernel"])
                            else:
                                preds = self.estimators[machine].predict(self.X_test)
                        except KeyError:
                            preds = self.estimators[machine].predict(self.X_test)

                        MSE[machine].append(mean_squared_error(self.y_test, preds))

                    MSE["KernelCobra"].append(mean_squared_error(self.y_test, kernel.predict(self.X_test, bandwidth=kwargs[bandwidth_kernel])))

                try:
                    dataframe = pd.DataFrame(data=MSE)
                except ValueError:
                    return MSE


            if type(self.aggregate) is Ewa:

                MSE = {k: [] for k, v in self.aggregate.estimators_.items()}
                MSE["EWA"] = []
                for i in range(0, reps):
                    ewa = Ewa(random_state=self.random_state, beta=self.aggregate.beta)
                    X, y = shuffle(self.aggregate.X_, self.aggregate.y_, random_state=self.aggregate.random_state)
                    ewa.fit(X, y, default=False)
                    ewa.split_data(shuffle_data=True)

                    for machine in self.estimators:
                        self.aggregate.estimators_[machine].fit(ewa.X_k_, ewa.y_k_)
                        ewa.load_machine(machine, self.aggregate.estimators_[machine])

                    ewa.load_machine_weights(self.aggregate.beta)
                    X_test, y_test = shuffle(self.X_test, self.y_test, random_state=self.aggregate.random_state)
                    for machine in self.estimators:
                        if "EWA" in machine:
                            self.estimators[machine].fit(X, y)
                        else:
                            self.estimators[machine].fit(ewa.X_k_, ewa.y_k_)
                        try:
                            if type(self.estimators[machine]) == KernelCobra:
                                preds = self.estimators[machine].predict(self.X_test, bandwidth=kwargs["bandwidth_kernel"])
                            else:
                                preds = self.estimators[machine].predict(self.X_test)
                        except KeyError:
                            preds = self.estimators[machine].predict(self.X_test)                      
                        MSE[machine].append(mean_squared_error(y_test, preds))
                    
                    MSE["EWA"].append(mean_squared_error(y_test, ewa.predict(X_test)))

                try:
                    dataframe = pd.DataFrame(data=MSE)
                except ValueError:
                    return MSE

            if type(self.aggregate) is ClassifierCobra:

                errors = {k: [] for k, v in self.aggregate.estimators_.items()}
                errors["ClassifierCobra"] = []
                for i in range(0, reps):
                    cc = ClassifierCobra(random_state=self.random_state)
                    X, y = shuffle(self.aggregate.X_, self.aggregate.y_, random_state=self.aggregate.random_state)
                    cc.fit(X, y, default=False)
                    cc.split_data(shuffle_data=True)

                    for machine in self.aggregate.estimators_:
                        self.aggregate.estimators_[machine].fit(cc.X_k_, cc.y_k_)
                        cc.load_machine(machine, self.aggregate.estimators_[machine])

                    cc.load_machine_predictions()
                    X_test, y_test = shuffle(self.X_test, self.y_test, random_state=self.aggregate.random_state)
                    for machine in self.estimators: 
                        errors[machine].append(1 - accuracy_score(y_test, self.estimators[machine].predict(X_test)))
                    errors["ClassifierCobra"].append(1 - accuracy_score(y_test, cc.predict(X_test)))

                try:
                    dataframe = pd.DataFrame(data=errors)
                except ValueError:
                    return errors
        


        # code for different boxplot styles using the python graph gallery tutorial:
        # https://python-graph-gallery.com/39-hidden-data-under-boxplot/

        sns.set(style="whitegrid")

        if kind == "normal":
            sns.boxplot(data=dataframe)
            plt.title("Boxplot")

        if kind == "violin":
            sns.violinplot(data=dataframe)
            plt.title("Violin Plot")

        if kind == "jitterplot":
            ax = sns.boxplot(data=dataframe)
            ax = sns.stripplot(data=dataframe, color="orange", jitter=0.2, size=2.5)
            plt.title("Boxplot with jitter", loc="left")

        plt.ylabel("Mean Squared Errors")
        plt.xlabel("Estimators")
        plt.figure(figsize=(self.plot_size, self.plot_size))
        plt.show()

        
        if info:
            return dataframe
Example #6
0
# data varies from :math:`-1` to :math:`1`.
#
# If we do not pass the :math:`\epsilon` parameter, we perform a CV on the
# training data for an optimised epsilon.
#
# It can be noticed that the ``default`` parameter is set as false: this
# is so we can walk you through what happens when COBRA is set-up, instead
# of the deafult settings being used.
#

######################################################################
# We're now going to split our dataset into two parts, and shuffle data
# points.
#

cobra.split_data(D1, D1 + D2, shuffle_data=True)

######################################################################
# Let's load the default machines to COBRA.
#

cobra.load_default()

######################################################################
# We note here that further machines can be loaded using either the
# ``loadMachine()`` and ``loadSKMachine()`` methods. The only prerequisite
# is that the machine has a valid ``predict()`` method.
#

######################################################################
# Using COBRA's machines