Example #1
0
    def __init__(self, url, application=None, session=None, output_grid=True):
        # download DDS/DAS
        scheme, netloc, path, query, fragment = urlsplit(url)

        ddsurl = urlunsplit((scheme, netloc, path + '.dds', query, fragment))
        r = GET(ddsurl, application, session)
        raise_for_status(r)
        dds = r.text

        dasurl = urlunsplit((scheme, netloc, path + '.das', query, fragment))
        r = GET(dasurl, application, session)
        raise_for_status(r)
        das = r.text

        # build the dataset from the DDS and add attributes from the DAS
        self.dataset = build_dataset(dds)
        add_attributes(self.dataset, parse_das(das))

        # remove any projection from the url, leaving selections
        projection, selection = parse_ce(query)
        url = urlunsplit((scheme, netloc, path, '&'.join(selection), fragment))

        # now add data proxies
        for var in walk(self.dataset, BaseType):
            var.data = BaseProxy(url,
                                 var.id,
                                 var.dtype,
                                 var.shape,
                                 application=application,
                                 session=session)
        for var in walk(self.dataset, SequenceType):
            template = copy.copy(var)
            var.data = SequenceProxy(url,
                                     template,
                                     application=application,
                                     session=session)

        # apply projections
        for var in projection:
            target = self.dataset
            while var:
                token, index = var.pop(0)
                target = target[token]
                if isinstance(target, BaseType):
                    target.data.slice = fix_slice(index, target.shape)
                elif isinstance(target, GridType):
                    index = fix_slice(index, target.array.shape)
                    target.array.data.slice = index
                    for s, child in zip(index, target.maps):
                        target[child].data.slice = (s, )
                elif isinstance(target, SequenceType):
                    target.data.slice = index

        # retrieve only main variable for grid types:
        for var in walk(self.dataset, GridType):
            var.set_output_grid(output_grid)
Example #2
0
File: dap.py Project: pydap/pydap
    def __init__(self, url, application=None, session=None, output_grid=True):
        # download DDS/DAS
        scheme, netloc, path, query, fragment = urlsplit(url)

        ddsurl = urlunsplit((scheme, netloc, path + ".dds", query, fragment))
        r = GET(ddsurl, application, session)
        raise_for_status(r)
        dds = r.text

        dasurl = urlunsplit((scheme, netloc, path + ".das", query, fragment))
        r = GET(dasurl, application, session)
        raise_for_status(r)
        das = r.text

        # build the dataset from the DDS and add attributes from the DAS
        self.dataset = build_dataset(dds)
        add_attributes(self.dataset, parse_das(das))

        # remove any projection from the url, leaving selections
        projection, selection = parse_ce(query)
        url = urlunsplit((scheme, netloc, path, "&".join(selection), fragment))

        # now add data proxies
        for var in walk(self.dataset, BaseType):
            var.data = BaseProxy(url, var.id, var.dtype, var.shape, application=application, session=session)
        for var in walk(self.dataset, SequenceType):
            template = copy.copy(var)
            var.data = SequenceProxy(url, template, application=application, session=session)

        # apply projections
        for var in projection:
            target = self.dataset
            while var:
                token, index = var.pop(0)
                target = target[token]
                if isinstance(target, BaseType):
                    target.data.slice = fix_slice(index, target.shape)
                elif isinstance(target, GridType):
                    index = fix_slice(index, target.array.shape)
                    target.array.data.slice = index
                    for s, child in zip(index, target.maps):
                        target[child].data.slice = (s,)
                elif isinstance(target, SequenceType):
                    target.data.slice = index

        # retrieve only main variable for grid types:
        for var in walk(self.dataset, GridType):
            var.set_output_grid(output_grid)
Example #3
0
    def __init__(self, url):
        # download DDS/DAS
        scheme, netloc, path, query, fragment = urlsplit(url)
        ddsurl = urlunsplit((scheme, netloc, path + '.dds', query, fragment))
        r = requests.get(ddsurl)
        r.raise_for_status()
        dds = r.text.encode('utf-8')
        dasurl = urlunsplit((scheme, netloc, path + '.das', query, fragment))
        r = requests.get(dasurl)
        r.raise_for_status()
        das = r.text.encode('utf-8')

        # build the dataset from the DDS and add attributes from the DAS
        self.dataset = build_dataset(dds)
        add_attributes(self.dataset, parse_das(das))

        # remove any projection from the url, leaving selections
        projection, selection = parse_ce(query)
        url = urlunsplit((scheme, netloc, path, '&'.join(selection), fragment))

        # now add data proxies
        for var in walk(self.dataset, BaseType):
            var.data = BaseProxy(url, var.id, var.descr)
        for var in walk(self.dataset, SequenceType):
            var.data = SequenceProxy(url, var.id, var.descr)

        # apply projections
        for var in projection:
            target = self.dataset
            while var:
                token, index = var.pop(0)
                target = target[token]
                if index and isinstance(target.data, BaseProxy):
                    target.data.slice = fix_slice(index, target.shape)
Example #4
0
    def __init__(self, url):
        # download DDS/DAS
        scheme, netloc, path, query, fragment = urlsplit(url)
        ddsurl = urlunsplit((scheme, netloc, path + '.dds', query, fragment))
        dds = requests.get(ddsurl).text.encode('utf-8')
        dasurl = urlunsplit((scheme, netloc, path + '.das', query, fragment))
        das = requests.get(dasurl).text.encode('utf-8')

        # build the dataset from the DDS and add attributes from the DAS
        self.dataset = build_dataset(dds)
        add_attributes(self.dataset, parse_das(das))

        # remove any projection from the url, leaving selections
        projection, selection = parse_ce(query)
        url = urlunsplit((scheme, netloc, path, '&'.join(selection), fragment))

        # now add data proxies
        for var in walk(self.dataset, BaseType):
            var.data = BaseProxy(url, var.id, var.descr)
        for var in walk(self.dataset, SequenceType):
            var.data = SequenceProxy(url, var.id, var.descr)

        # apply projections
        for var in projection:
            target = self.dataset
            while var:
                token, index = var.pop(0)
                target = target[token]
                if index and isinstance(target.data, BaseProxy):
                    target.data.slice = fix_slice(index, target.shape)
Example #5
0
    def __getitem__(self, index):
        # build download url
        index = combine_slices(self.slice, fix_slice(index, self.shape))
        scheme, netloc, path, query, fragment = urlsplit(self.baseurl)
        url = urlunsplit(
            (scheme, netloc, path + '.dods',
             self.id + hyperslab(index) + '&' + query, fragment)).rstrip('&')

        # download and unpack data
        r = requests.get(url)
        dds, data = r.content.split('\nData:\n', 1)

        if self.shape:
            # skip size packing
            if self.dtype.char == 'S':
                data = data[4:]
            else:
                data = data[8:]

        # calculate array size
        shape = tuple((s.stop - s.start) / s.step for s in index)
        size = np.prod(shape)

        if self.dtype == np.byte:
            return np.fromstring(data[:size], 'B')
        elif self.dtype.char == 'S':
            out = []
            for word in range(size):
                n = np.fromstring(data[:4], '>I')  # read length
                data = data[4:]
                out.append(data[:n])
                data = data[n + (-n % 4):]
            return np.array(out, 'S')
        else:
            return np.fromstring(data, self.dtype).reshape(shape)
Example #6
0
    def __getitem__(self, index):
        slice_ = combine_slices(self._slice, fix_slice(index, self.shape))
        scheme, netloc, path, query, fragment = urlsplit(self.url)
        url = urlunsplit((
                scheme, netloc, path + '.dods',
                quote(self.id) + hyperslab(slice_) + '&' + query,
                fragment))

        resp, data = request(url)
        dds, xdrdata = data.split('\nData:\n', 1)
        dataset = DDSParser(dds).parse()
        data = data2 = DapUnpacker(xdrdata, dataset).getvalue()

        # Retrieve the data from any parent structure(s).
        for var in walk(dataset):
            if type(var) in (StructureType, DatasetType):
                data = data[0]
            elif var.id == self.id: 
                return data

        # Some old servers return the wrong response. :-/
        # I found a server that would return an array to a request
        # for an array inside a grid (instead of a structure with
        # the array); this will take care of it.
        for var in walk(dataset):
            if type(var) in (StructureType, DatasetType):
                data2 = data2[0]
            elif self.id.endswith(var.id):
                return data2
Example #7
0
    def __getitem__(self, index):
        slice_ = combine_slices(self._slice, fix_slice(index, self.shape))
        scheme, netloc, path, query, fragment = urlsplit(self.url)
        url = urlunsplit((scheme, netloc, path + '.dods',
                          self.id + hyperslab(slice_) + '&' + query, fragment))

        resp, data = request(url)
        dds, xdrdata = data.split('\nData:\n', 1)
        dataset = DDSParser(dds).parse()
        data = data2 = DapUnpacker(xdrdata, dataset).getvalue()

        # Retrieve the data from any parent structure(s).
        for var in walk(dataset):
            if type(var) in (StructureType, DatasetType):
                data = data[0]
            elif var.id == self.id:
                return data

        # Some old servers return the wrong response. :-/
        # I found a server that would return an array to a request
        # for an array inside a grid (instead of a structure with
        # the array); this will take care of it.
        for var in walk(dataset):
            if type(var) in (StructureType, DatasetType):
                data2 = data2[0]
            elif self.id.endswith(var.id):
                return data2
Example #8
0
    def test_negative_int(self):
        """Negative values are converted to positive."""
        x = np.arange(10)

        slice1 = -5
        slice2 = fix_slice(slice1, x.shape)

        self.assertEqual(slice2, (5, ))
        np.testing.assert_array_equal(x[slice1], x[slice2])
Example #9
0
    def test_negative_stop(self):
        """Test for slices with a negative stop."""
        x = np.arange(10)

        slice1 = slice(2, -2)
        slice2 = fix_slice(slice1, x.shape)

        self.assertEqual(slice2, (slice(2, 8, 1), ))
        np.testing.assert_array_equal(x[slice1], x[slice2])
Example #10
0
    def test_negative_int(self):
        """Negative values are converted to positive."""
        x = np.arange(10)

        slice1 = -5
        slice2 = fix_slice(slice1, x.shape)

        self.assertEqual(slice2, (5,))
        np.testing.assert_array_equal(x[slice1], x[slice2])
Example #11
0
    def test_negative_stop(self):
        """Test for slices with a negative stop."""
        x = np.arange(10)

        slice1 = slice(2, -2)
        slice2 = fix_slice(slice1, x.shape)

        self.assertEqual(slice2, (slice(2, 8, 1),))
        np.testing.assert_array_equal(x[slice1], x[slice2])
Example #12
0
    def test_ellipsis(self):
        """Expand Ellipsis to occupy the missing dimensions."""
        x = np.arange(6).reshape(2, 3, 1)

        slice1 = Ellipsis, 0
        slice2 = fix_slice(slice1, x.shape)

        # an Ellipsis is expanded to slice(None)
        self.assertEqual(slice2, ((slice(0, 2, 1), slice(0, 3, 1), 0)))
        np.testing.assert_array_equal(x[slice1], x[slice2])
Example #13
0
 def __getitem__(self, key):
     if isinstance(key, basestring):
         return StructureType.__getitem__(self, key)
     else:
         key = fix_slice(key, self.shape)
         out = copy.deepcopy(self)
         for var, slice_ in zip(out.walk(), [key] + list(key)):
             var.data = var.data[slice_]
             var.shape = var.data.shape
         return out
Example #14
0
    def test_not_tuple(self):
        """Non tuples should be converted and handled correctly."""
        x = np.arange(10)

        slice1 = 0
        slice2 = fix_slice(slice1, x.shape)

        # ``fix_slice`` will convert to a tuple
        self.assertEqual(slice2, (0, ))

        # assert that the slice is equivalent to the original
        np.testing.assert_array_equal(x[slice1], x[slice2])
Example #15
0
    def test_ellipsis(self):
        """Expand Ellipsis to occupy the missing dimensions."""
        x = np.arange(6).reshape(2, 3, 1)

        slice1 = Ellipsis, 0
        slice2 = fix_slice(slice1, x.shape)

        # an Ellipsis is expanded to slice(None)
        self.assertEqual(
            slice2,
            ((slice(0, 2, 1), slice(0, 3, 1), 0)))
        np.testing.assert_array_equal(x[slice1], x[slice2])
Example #16
0
    def test_not_tuple(self):
        """Non tuples should be converted and handled correctly."""
        x = np.arange(10)

        slice1 = 0
        slice2 = fix_slice(slice1, x.shape)

        # ``fix_slice`` will convert to a tuple
        self.assertEqual(slice2, (0,))

        # assert that the slice is equivalent to the original
        np.testing.assert_array_equal(x[slice1], x[slice2])
Example #17
0
    def __getitem__(self, index):
        # build download url
        index = combine_slices(self.slice, fix_slice(index, self.shape))
        scheme, netloc, path, query, fragment = urlsplit(self.baseurl)
        url = urlunsplit((
            scheme, netloc, path + '.dods',
            quote(self.id) + hyperslab(index) + '&' + query,
            fragment)).rstrip('&')

        # download and unpack data
        logger.info("Fetching URL: %s" % url)
        r = GET(url, self.application, self.session)
        raise_for_status(r)
        dds, data = r.body.split(b'\nData:\n', 1)
        dds = dds.decode(r.content_encoding or 'ascii')

        if self.shape:
            # skip size packing
            if self.dtype.char in 'SU':
                data = data[4:]
            else:
                data = data[8:]

        # calculate array size
        shape = tuple(
            int(np.ceil((s.stop-s.start)/float(s.step))) for s in index)
        size = int(np.prod(shape))

        if self.dtype == np.byte:
            return np.fromstring(data[:size], 'B').reshape(shape)
        elif self.dtype.char in 'SU':
            out = []
            for word in range(size):
                n = np.asscalar(np.fromstring(data[:4], '>I'))  # read length
                data = data[4:]
                out.append(data[:n])
                data = data[n + (-n % 4):]
            return np.array([text_type(x.decode('ascii'))
                             for x in out], 'S').reshape(shape)
        else:
            try:
                return np.fromstring(data, self.dtype).reshape(shape)
            except ValueError as e:
                if str(e) == 'total size of new array must be unchanged':
                    # server-side failure.
                    # it is expected that the user should be mindful of this:
                    raise RuntimeError(
                                ('variable {0} could not be properly '
                                 'retrieved. To avoid this '
                                 'error consider using open_url(..., '
                                 'output_grid=False).').format(quote(self.id)))
                else:
                    raise
Example #18
0
File: dap.py Project: pydap/pydap
    def __getitem__(self, index):
        # build download url
        index = combine_slices(self.slice, fix_slice(index, self.shape))
        scheme, netloc, path, query, fragment = urlsplit(self.baseurl)
        url = urlunsplit(
            (scheme, netloc, path + ".dods", quote(self.id) + hyperslab(index) + "&" + query, fragment)
        ).rstrip("&")

        # download and unpack data
        logger.info("Fetching URL: %s" % url)
        r = GET(url, self.application, self.session)
        raise_for_status(r)
        dds, data = r.body.split(b"\nData:\n", 1)
        dds = dds.decode(r.content_encoding or "ascii")

        if self.shape:
            # skip size packing
            if self.dtype.char in "SU":
                data = data[4:]
            else:
                data = data[8:]

        # calculate array size
        shape = tuple(int(np.ceil((s.stop - s.start) / float(s.step))) for s in index)
        size = int(np.prod(shape))

        if self.dtype == np.byte:
            return np.fromstring(data[:size], "B").reshape(shape)
        elif self.dtype.char in "SU":
            out = []
            for word in range(size):
                n = np.asscalar(np.fromstring(data[:4], ">I"))  # read length
                data = data[4:]
                out.append(data[:n])
                data = data[n + (-n % 4) :]
            return np.array([text_type(x.decode("ascii")) for x in out], "S").reshape(shape)
        else:
            try:
                return np.fromstring(data, self.dtype).reshape(shape)
            except ValueError as e:
                if str(e) == "total size of new array must be unchanged":
                    # server-side failure.
                    # it is expected that the user should be mindful of this:
                    raise RuntimeError(
                        (
                            "variable {0} could not be properly "
                            "retrieved. To avoid this "
                            "error consider using open_url(..., "
                            "output_grid=False)."
                        ).format(quote(self.id))
                    )
                else:
                    raise
Example #19
0
    def __getitem__(self, index):
        """
        Download data for all the tiles containing the request.

        """
        slice_ = combine_slices(self._slice, fix_slice(index, self.shape))
        requested = self.parse_request(slice_)
        with self.lock.readlock:
            needed = requested & ~self.index[:]

            # update cache with needed data
            with self.lock.writelock:
                for tile in self.get_tiles(needed):
                    self.cache[tile] = super(CachingArrayProxy, self).__getitem__(tile)
                # update index with newly requested data
                self.index[:] = self.index[:] | needed

            return self.cache[slice_]
Example #20
0
    def __getitem__(self, index):
        """
        Download data for all the tiles containing the request.

        """
        slice_ = combine_slices(self._slice, fix_slice(index, self.shape))
        requested = self.parse_request(slice_)
        with self.lock.readlock:
            needed = requested & ~self.index[:]

            # update cache with needed data
            with self.lock.writelock:
                for tile in self.get_tiles(needed):
                    self.cache[tile] = super(CachingArrayProxy, self).__getitem__(tile)
                # update index with newly requested data
                self.index[:] = self.index[:] | needed

            return self.cache[slice_]
Example #21
0
    def __getitem__(self, index):
        # build download url
        index = combine_slices(self.slice, fix_slice(index, self.shape))
        scheme, netloc, path, query, fragment = urlsplit(self.baseurl)
        url = urlunsplit((
            scheme, netloc, path + '.dods',
            quote(self.id) + hyperslab(index) + '&' + query,
            fragment)).rstrip('&')

        # download and unpack data
        logger.info("Fetching URL: %s" % url)
        r = GET(url, self.application, self.session)
        raise_for_status(r)
        dds, data = r.body.split(b'\nData:\n', 1)
        dds = dds.decode(r.content_encoding or 'ascii')

        if self.shape:
            # skip size packing
            if self.dtype.char in 'SU':
                data = data[4:]
            else:
                data = data[8:]

        # calculate array size
        shape = tuple(
            int(np.ceil((s.stop-s.start)/float(s.step))) for s in index)
        size = int(np.prod(shape))

        if self.dtype == np.byte:
            return np.fromstring(data[:size], 'B')
        elif self.dtype.char in 'SU':
            out = []
            for word in range(size):
                n = np.fromstring(data[:4], '>I')  # read length
                data = data[4:]
                out.append(data[:n])
                data = data[n + (-n % 4):]
            return np.array([ text_type(x.decode('ascii')) for x in out ], 'S')
        else:
            return np.fromstring(data, self.dtype).reshape(shape)
Example #22
0
    def __getitem__(self, key):
        out = copy.deepcopy(self)
        if isinstance(key, ConstraintExpression):
            scheme, netloc, path, query, fragment = urlsplit(self.url)
            out.url = urlunsplit((
                    scheme, netloc, path, str(key & query), fragment))

            if out._slice != (slice(None),):
                warnings.warn('Selection %s will be applied before projection "%s".' % (
                        key, hyperslab(out._slice)))
        elif isinstance(key, basestring):
            out._slice = (slice(None),)
            out.children = ()
            parent = self.id
            if ',' in parent:
                parent = parent.split(',', 1)[0].rsplit('.', 1)[0]
            out.id = '%s%s.%s' % (parent, hyperslab(self._slice), key)
        elif isinstance(key, tuple):
            out.children = key[:]
        else:
            out._slice = combine_slices(self._slice, fix_slice(key, (sys.maxint,)))
        return out
Example #23
0
    def __getitem__(self, index):
        # build download url
        index = combine_slices(self.slice, fix_slice(index, self.shape))
        scheme, netloc, path, query, fragment = urlsplit(self.baseurl)
        url = urlunsplit((
                scheme, netloc, path + '.dods',
                self.id + hyperslab(index) + '&' + query,
                fragment)).rstrip('&')

        # download and unpack data
        r = requests.get(url)
        r.raise_for_status()
        dds, data = r.content.split('\nData:\n', 1)
        
        if self.shape:
            # skip size packing
            if self.dtype.char == 'S':
                data = data[4:]
            else:
                data = data[8:]

        # calculate array size
        shape = tuple((s.stop-s.start)/s.step for s in index)
        size = np.prod(shape)

        if self.dtype == np.byte:
            return np.fromstring(data[:size], 'B')
        elif self.dtype.char == 'S':
            out = []
            for word in range(size):
                n = np.fromstring(data[:4], '>I')  # read length
                data = data[4:]
                out.append(data[:n])
                data = data[n + (-n % 4):]
            return np.array(out, 'S')
        else:
            return np.fromstring(data, self.dtype).reshape(shape)
Example #24
0
    def __getitem__(self, index):
        index = fix_slice(index, self.shape)

        # create a new axis
        if self.axis is None:
            # get the slice along the aggregation axis, and leave the rest for
            # the variable itself
            slice_, index = index[0], index[1:]
            data = []
            for file, n in self.count[slice_]:
                f = netcdf_file(file)
                data.append(f.variables[self.name][index])
                f.close()
            return np.array(data).astype(self.dtype)

        # concatenate along an existing axis
        else:
            # convert index to list so we can change it
            index = list(index)

            # get the slice along the aggregation axis and store it in a
            # boolean array that we'll map to the files
            slice_ = index[self.axis]
            indexes = np.zeros(self.shape[self.axis], bool)
            indexes[slice_] = 1

            offset = 0
            data = []
            for file, n in self.count:
                selected_here = indexes[offset:offset+n]
                if any(selected_here):
                    index[self.axis] = selected_here
                    f = netcdf_file(file)
                    data.append(f.variables[self.name][tuple(index)])
                    f.close()
                offset += n
            return np.concatenate(data, axis=self.axis).astype(self.dtype)
Example #25
0
    def __getitem__(self, key):
        out = copy.deepcopy(self)
        if isinstance(key, ConstraintExpression):
            scheme, netloc, path, query, fragment = urlsplit(self.url)
            out.url = urlunsplit(
                (scheme, netloc, path, str(key & query), fragment))

            if out._slice != (slice(None), ):
                warnings.warn(
                    'Selection %s will be applied before projection "%s".' %
                    (key, hyperslab(out._slice)))
        elif isinstance(key, basestring):
            out._slice = (slice(None), )
            out.children = ()
            parent = self.id
            if ',' in parent:
                parent = parent.split(',', 1)[0].rsplit('.', 1)[0]
            out.id = '%s%s.%s' % (parent, hyperslab(self._slice), key)
        elif isinstance(key, tuple):
            out.children = key[:]
        else:
            out._slice = combine_slices(self._slice,
                                        fix_slice(key, (sys.maxint, )))
        return out
Example #26
0
def open_url(url):
    """
    Open a given dataset URL, trying different response methods. 

    The function checks the stub DDX method, and falls back to the
    DDS+DAS responses. It can be easily extended for other representations
    like JSON.

    The URL should point to the dataset, omitting any response extensions
    like ``.dds``. Username and password can be passed in the URL like::

        http://user:[email protected]:port/path

    They will be transmitted as plaintext if the server supports only
    Basic authentication, so be careful. For Digest authentication this
    is safe.

    The URL can point directly to an Opendap dataset, or it can contain
    any number of contraint expressions (selection/projections)::

        http://example.com/dataset?var1,var2&var3>10

    You can also specify a cache directory, a timeout and a proxy using
    the global variables from ``pydap.lib``::

        >>> import pydap.lib
        >>> pydap.lib.TIMEOUT = 60  # seconds
        >>> pydap.lib.CACHE = '.cache'
        >>> import httplib2
        >>> from pydap.util import socks
        >>> pydap.lib.PROXY = httplib2.ProxyInfo(socks.PROXY_TYPE_HTTP, 'localhost', 8000)

    """
    for response in [_ddx, _ddsdas]:
        dataset = response(url)
        if dataset: break
    else:
        raise ClientError("Unable to open dataset.")

    # Remove any projections from the url, leaving selections.
    scheme, netloc, path, query, fragment = urlsplit(url)
    projection, selection = parse_qs(query)
    url = urlunsplit(
            (scheme, netloc, path, '&'.join(selection), fragment))

    # Set data to a Proxy object for BaseType and SequenceType. These
    # variables can then be sliced to retrieve the data on-the-fly.
    for var in walk(dataset, BaseType):
        var.data = ArrayProxy(var.id, url, var.shape)
    for var in walk(dataset, SequenceType):
        var.data = SequenceProxy(var.id, url)

    # Set server-side functions.
    dataset.functions = Functions(url)

    # Apply the corresponding slices.
    projection = fix_shn(projection, dataset)
    for var in projection:
        target = dataset
        while var:
            token, slice_ = var.pop(0)
            target = target[token]
            if slice_ and isinstance(target.data, VariableProxy):
                shape = getattr(target, 'shape', (sys.maxint,))
                target.data._slice = fix_slice(slice_, shape)

    return dataset