def __init__(
        self,
        batch_size,
        conv_lstm_model,
        seq_len=10,
        learning_rate=1e-05,
        computable_loss=None,
        opt_params=None,
        verificatable_result=None,
        pre_learned_path_list=None,
        verbose_mode=False
    ):
        logger = getLogger("pydbm")
        handler = StreamHandler()
        if verbose_mode is True:
            handler.setLevel(DEBUG)
            logger.setLevel(DEBUG)
        else:
            handler.setLevel(ERROR)
            logger.setLevel(ERROR)

        logger.addHandler(handler)

        self.__logger = getLogger("pyqlearning")
        handler = StreamHandler()
        if verbose_mode is True:
            self.__logger.setLevel(DEBUG)
        else:
            self.__logger.setLevel(ERROR)
            
        self.__logger.addHandler(handler)

        if isinstance(conv_lstm_model, ConvLSTMModel) is False:
            raise TypeError()

        if computable_loss is None:
            computable_loss = MeanSquaredError()
        if verificatable_result is None:
            verificatable_result = VerificateFunctionApproximation()
        if opt_params is None:
            opt_params = Adam()
            opt_params.weight_limit = 0.5
            opt_params.dropout_rate = 0.0

        self.__conv_lstm_model = conv_lstm_model
        self.__seq_len = seq_len
        self.__batch_size = batch_size
        self.__computable_loss = computable_loss
        self.__learning_rate = learning_rate
        self.__verbose_mode = verbose_mode
        self.__q_logs_list = []
Example #2
0
    def __init__(self,
                 deconvolution_layer_list,
                 computable_loss=None,
                 cnn_output_graph=None,
                 opt_params=None,
                 learning_rate=1e-05,
                 learning_attenuate_rate=0.1,
                 attenuate_epoch=50):
        '''
        Init.

        Args:
            deconvolution_layer_list:           `list` of `DeconvolutionLayer`.
            computable_loss:                    Loss function.
            cnn_output_graph:                   is-a `CNNOutputGraph`.
            opt_params:                         is-a `OptParams`. If `None`, this value will be `Adam`.
            learning_rate:                      Learning rate.
            learning_attenuate_rate:            Attenuate the `learning_rate` by a factor of this value every `attenuate_epoch`.
            attenuate_epoch:                    Attenuate the `learning_rate` by a factor of `learning_attenuate_rate` every `attenuate_epoch`.
                                                Additionally, in relation to regularization,
                                                this class constrains weight matrixes every `attenuate_epoch`.

        '''
        for deconvolution_layer in deconvolution_layer_list:
            if isinstance(deconvolution_layer, DeconvolutionLayer) is False:
                raise TypeError()

        if cnn_output_graph is not None and isinstance(
                cnn_output_graph, CNNOutputGraph) is False:
            raise TypeError(
                "The type of `cnn_output_graph` must be `CNNOutputGraph`.")

        if opt_params is None:
            opt_params = Adam()
            opt_params.weight_limit = 1e+10
            opt_params.dropout_rate = 0.0

        if isinstance(opt_params, OptParams) is False:
            raise TypeError()

        self.__deconvolution_layer_list = deconvolution_layer_list
        self.__computable_loss = computable_loss
        self.__cnn_output_graph = cnn_output_graph
        self.__learning_rate = learning_rate
        self.__learning_attenuate_rate = learning_attenuate_rate
        self.__attenuate_epoch = attenuate_epoch

        self.__opt_params = opt_params
        self.__epoch_counter = 0
        logger = getLogger("pygan")
        self.__logger = logger
    def __init__(self,
                 deconvolution_layer_list,
                 computable_loss=None,
                 cnn_output_graph=None,
                 opt_params=None,
                 learning_rate=1e-05):
        '''
        Init.

        Args:
            deconvolution_layer_list:   `list` of `DeconvolutionLayer`.
            computable_loss:            Loss function.
            cnn_output_graph:           is-a `CNNOutputGraph`.
            opt_params:                 is-a `OptParams`. If `None`, this value will be `Adam`.
            learning_rate:              Learning rate.

        '''
        for deconvolution_layer in deconvolution_layer_list:
            if isinstance(deconvolution_layer, DeconvolutionLayer) is False:
                raise TypeError()

        if cnn_output_graph is not None and isinstance(
                cnn_output_graph, CNNOutputGraph) is False:
            raise TypeError(
                "The type of `cnn_output_graph` must be `CNNOutputGraph`.")

        if opt_params is None:
            opt_params = Adam()
            opt_params.weight_limit = 1e+10
            opt_params.dropout_rate = 0.0

        if isinstance(opt_params, OptParams) is False:
            raise TypeError()

        self.__deconvolution_layer_list = deconvolution_layer_list
        self.__computable_loss = computable_loss
        self.__cnn_output_graph = cnn_output_graph
        self.__learning_rate = learning_rate
        self.__attenuate_epoch = 50
        self.__opt_params = opt_params
        self.__epoch_counter = 0
        logger = getLogger("pygan")
        self.__logger = logger
Example #4
0
    def __build_retrospective_encoder(
        self,
        input_neuron_count=20,
        hidden_neuron_count=20,
        weight_limit=0.5,
        dropout_rate=0.5,
        batch_size=20,
        learning_rate=1e-05,
        bptt_tau=8
    ):
        encoder_graph = ReEncoderGraph()

        encoder_graph.observed_activating_function = TanhFunction()
        encoder_graph.input_gate_activating_function = LogisticFunction()
        encoder_graph.forget_gate_activating_function = LogisticFunction()
        encoder_graph.output_gate_activating_function = LogisticFunction()
        encoder_graph.hidden_activating_function = LogisticFunction()
        encoder_graph.output_activating_function = LogisticFunction()

        encoder_graph.create_rnn_cells(
            input_neuron_count=input_neuron_count,
            hidden_neuron_count=hidden_neuron_count,
            output_neuron_count=1
        )
        encoder_opt_params = EncoderAdam()
        encoder_opt_params.weight_limit = weight_limit
        encoder_opt_params.dropout_rate = dropout_rate

        encoder = ReEncoder(
            graph=encoder_graph,
            epochs=100,
            batch_size=batch_size,
            learning_rate=learning_rate,
            learning_attenuate_rate=0.1,
            attenuate_epoch=50,
            bptt_tau=bptt_tau,
            test_size_rate=0.3,
            computable_loss=MeanSquaredError(),
            opt_params=encoder_opt_params,
            verificatable_result=VerificateFunctionApproximation()
        )

        return encoder
Example #5
0
    def __init__(self,
                 deconvolution_layer_list,
                 opt_params=None,
                 learning_rate=1e-05,
                 verbose_mode=False):
        '''
        Init.

        Args:
            deconvolution_layer_list:   `list` of `DeconvolutionLayer`.
            opt_params:                 is-a `OptParams`. If `None`, this value will be `Adam`.
            learning_rate:              Learning rate.
            verbose_mode:               Verbose mode or not.

        '''
        for deconvolution_layer in deconvolution_layer_list:
            if isinstance(deconvolution_layer, DeconvolutionLayer) is False:
                raise TypeError()

        if opt_params is None:
            opt_params = Adam()
            opt_params.dropout_rate = 0.0

        if isinstance(opt_params, OptParams) is False:
            raise TypeError()

        logger = getLogger("pydbm")
        handler = StreamHandler()
        if verbose_mode is True:
            handler.setLevel(DEBUG)
            logger.setLevel(DEBUG)
        else:
            handler.setLevel(ERROR)
            logger.setLevel(ERROR)

        logger.addHandler(handler)

        self.__deconvolution_layer_list = deconvolution_layer_list
        self.__learning_rate = learning_rate
        self.__attenuate_epoch = 50
        self.__opt_params = opt_params
        self.__logger = logger
Example #6
0
    def __build_encoder_decoder_controller(
        self,
        input_neuron_count=20,
        hidden_neuron_count=20,
        weight_limit=0.5,
        dropout_rate=0.5,
        epochs=1000,
        batch_size=20,
        learning_rate=1e-05,
        attenuate_epoch=50,
        learning_attenuate_rate=0.1,
        seq_len=8,
        bptt_tau=8,
        test_size_rate=0.3,
        tol=1e-10,
        tld=100.0
    ):
        encoder_graph = EncoderGraph()

        encoder_graph.observed_activating_function = LogisticFunction()
        encoder_graph.input_gate_activating_function = LogisticFunction()
        encoder_graph.forget_gate_activating_function = LogisticFunction()
        encoder_graph.output_gate_activating_function = LogisticFunction()
        encoder_graph.hidden_activating_function = LogisticFunction()
        encoder_graph.output_activating_function = LogisticFunction()

        encoder_graph.create_rnn_cells(
            input_neuron_count=input_neuron_count,
            hidden_neuron_count=hidden_neuron_count,
            output_neuron_count=1
        )
        encoder_opt_params = EncoderAdam()
        encoder_opt_params.weight_limit = weight_limit
        encoder_opt_params.dropout_rate = dropout_rate

        encoder = Encoder(
            graph=encoder_graph,
            epochs=100,
            batch_size=batch_size,
            learning_rate=learning_rate,
            learning_attenuate_rate=0.1,
            attenuate_epoch=50,
            bptt_tau=8,
            test_size_rate=0.3,
            computable_loss=MeanSquaredError(),
            opt_params=encoder_opt_params,
            verificatable_result=VerificateFunctionApproximation(),
            tol=tol,
            tld=tld
        )

        decoder_graph = DecoderGraph()

        decoder_graph.observed_activating_function = LogisticFunction()
        decoder_graph.input_gate_activating_function = LogisticFunction()
        decoder_graph.forget_gate_activating_function = LogisticFunction()
        decoder_graph.output_gate_activating_function = LogisticFunction()
        decoder_graph.hidden_activating_function = LogisticFunction()
        decoder_graph.output_activating_function = SoftmaxFunction()

        decoder_graph.create_rnn_cells(
            input_neuron_count=hidden_neuron_count,
            hidden_neuron_count=hidden_neuron_count,
            output_neuron_count=input_neuron_count
        )
        decoder_opt_params = DecoderAdam()
        decoder_opt_params.weight_limit = weight_limit
        decoder_opt_params.dropout_rate = dropout_rate

        decoder = Decoder(
            graph=decoder_graph,
            epochs=100,
            batch_size=batch_size,
            learning_rate=learning_rate,
            learning_attenuate_rate=0.1,
            attenuate_epoch=50,
            seq_len=seq_len,
            bptt_tau=bptt_tau,
            test_size_rate=0.3,
            computable_loss=MeanSquaredError(),
            opt_params=decoder_opt_params,
            verificatable_result=VerificateFunctionApproximation()
        )

        encoder_decoder_controller = EncoderDecoderController(
            encoder=encoder,
            decoder=decoder,
            epochs=epochs,
            batch_size=batch_size,
            learning_rate=learning_rate,
            learning_attenuate_rate=learning_attenuate_rate,
            attenuate_epoch=attenuate_epoch,
            test_size_rate=test_size_rate,
            computable_loss=MeanSquaredError(),
            verificatable_result=VerificateFunctionApproximation(),
            tol=tol,
            tld=tld
        )

        return encoder_decoder_controller
Example #7
0
    def __init__(self,
                 convolutional_auto_encoder=None,
                 batch_size=10,
                 channel=1,
                 learning_rate=1e-10,
                 opt_params=None,
                 feature_matching_layer=0):
        '''
        Init.
        
        Args:
            convolutional_auto_encoder:     is-a `pydbm.cnn.convolutionalneuralnetwork.convolutional_auto_encoder.ConvolutionalAutoEncoder`.
            learning_rate:                  Learning rate.
            batch_size:                     Batch size in mini-batch.
            learning_rate:                  Learning rate.
            opt_params:                     is-a `pydbm.optimization.opt_params.OptParams`.
            feature_matching_layer:         Key of layer number for feature matching forward/backward.

        '''
        if isinstance(convolutional_auto_encoder,
                      CAE) is False and convolutional_auto_encoder is not None:
            raise TypeError(
                "The type of `convolutional_auto_encoder` must be `pydbm.cnn.convolutionalneuralnetwork.convolutional_auto_encoder.ConvolutionalAutoEncoder`."
            )

        if opt_params is None:
            opt_params = Adam()
            opt_params.dropout_rate = 0.0

        if convolutional_auto_encoder is None:
            scale = 0.01
            conv1 = ConvolutionLayer1(
                ConvGraph1(activation_function=TanhFunction(),
                           filter_num=batch_size,
                           channel=channel,
                           kernel_size=3,
                           scale=scale,
                           stride=1,
                           pad=1))

            conv2 = ConvolutionLayer2(
                ConvGraph2(activation_function=TanhFunction(),
                           filter_num=batch_size,
                           channel=batch_size,
                           kernel_size=3,
                           scale=scale,
                           stride=1,
                           pad=1))

            convolutional_auto_encoder = RepellingConvolutionalAutoEncoder(
                layerable_cnn_list=[conv1, conv2],
                epochs=100,
                batch_size=batch_size,
                learning_rate=1e-05,
                learning_attenuate_rate=0.1,
                attenuate_epoch=25,
                computable_loss=MeanSquaredError(),
                opt_params=opt_params,
                verificatable_result=VerificateFunctionApproximation(),
                test_size_rate=0.3,
                tol=1e-15,
                save_flag=False)

        self.__convolutional_auto_encoder = convolutional_auto_encoder
        self.__learning_rate = learning_rate
        self.__epoch_counter = 0
        self.__feature_matching_layer = feature_matching_layer
        logger = getLogger("pygan")
        self.__logger = logger
Example #8
0
    def __init__(self,
                 midi_path_list,
                 batch_size=20,
                 seq_len=8,
                 time_fraction=1.0,
                 learning_rate=1e-10,
                 hidden_dim=15200,
                 generative_model=None,
                 discriminative_model=None,
                 gans_value_function=None):
        '''
        Init.

        Args:
            midi_path_list:         `list` of paths to MIDI files.
            batch_size:             Batch size.
            seq_len:                The length of sequence that LSTM networks will observe.
            time_fraction:          Time fraction or time resolution (seconds).

            learning_rate:          Learning rate in `Generator` and `Discriminator`.

            hidden_dim:             The number of units in hidden layer of `DiscriminativeModel`.

            true_sampler:           is-a `TrueSampler`.
            noise_sampler:          is-a `NoiseSampler`.
            generative_model:       is-a `GenerativeModel`.
            discriminative_model:   is-a `DiscriminativeModel`.
            gans_value_function:    is-a `GANsValueFunction`.
        '''
        self.__midi_controller = MidiController()
        self.__midi_df_list = [
            self.__midi_controller.extract(midi_path)
            for midi_path in midi_path_list
        ]

        bar_gram = BarGram(midi_df_list=self.__midi_df_list,
                           time_fraction=time_fraction)
        self.__bar_gram = bar_gram
        dim = self.__bar_gram.dim

        true_sampler = BarGramTrueSampler(bar_gram=bar_gram,
                                          midi_df_list=self.__midi_df_list,
                                          batch_size=batch_size,
                                          seq_len=seq_len,
                                          time_fraction=time_fraction)

        noise_sampler = BarGramNoiseSampler(bar_gram=bar_gram,
                                            midi_df_list=self.__midi_df_list,
                                            batch_size=batch_size,
                                            seq_len=seq_len,
                                            time_fraction=time_fraction)

        if generative_model is None:
            conv_activation_function = TanhFunction()
            conv_activation_function.batch_norm = BatchNorm()

            channel = noise_sampler.channel

            convolution_layer_list = [
                ConvolutionLayer1(
                    ConvGraph1(activation_function=conv_activation_function,
                               filter_num=batch_size,
                               channel=channel,
                               kernel_size=3,
                               scale=0.01,
                               stride=1,
                               pad=1))
            ]

            deconv_activation_function = SoftmaxFunction()

            deconvolution_layer_list = [
                DeconvolutionLayer(
                    DeCNNGraph(activation_function=deconv_activation_function,
                               filter_num=batch_size,
                               channel=channel,
                               kernel_size=3,
                               scale=0.01,
                               stride=1,
                               pad=1))
            ]

            opt_params_deconv = Adam()
            deconvolution_model = DeconvolutionModel(
                deconvolution_layer_list=deconvolution_layer_list,
                opt_params=opt_params_deconv)

            opt_params = Adam()
            opt_params.dropout_rate = 0.0

            generative_model = Generator(
                batch_size=batch_size,
                layerable_cnn_list=convolution_layer_list,
                deconvolution_model=deconvolution_model,
                condition_noise_sampler=UniformNoiseSampler(
                    low=-0.1,
                    high=0.1,
                    output_shape=(batch_size, channel, seq_len, dim)),
                learning_rate=learning_rate,
            )

        generative_model.noise_sampler = noise_sampler

        if discriminative_model is None:
            activation_function = LogisticFunction()
            activation_function.batch_norm = BatchNorm()

            # First convolution layer.
            conv2 = ConvolutionLayer2(
                # Computation graph for first convolution layer.
                ConvGraph2(
                    # Logistic function as activation function.
                    activation_function=activation_function,
                    # The number of `filter`.
                    filter_num=batch_size,
                    # The number of channel.
                    channel=noise_sampler.channel * 2,
                    # The size of kernel.
                    kernel_size=3,
                    # The filter scale.
                    scale=0.001,
                    # The nubmer of stride.
                    stride=1,
                    # The number of zero-padding.
                    pad=1))

            # Stack.
            layerable_cnn_list = [conv2]

            opt_params = Adam()
            opt_params.dropout_rate = 0.0

            if hidden_dim is None:
                hidden_dim = channel * seq_len * dim

            cnn_output_activating_function = LogisticFunction()

            cnn_output_graph = CNNOutputGraph(
                hidden_dim=hidden_dim,
                output_dim=1,
                activating_function=cnn_output_activating_function,
                scale=0.01)

            discriminative_model = Discriminator(
                batch_size=batch_size,
                layerable_cnn_list=layerable_cnn_list,
                cnn_output_graph=cnn_output_graph,
                opt_params=opt_params,
                computable_loss=CrossEntropy(),
                learning_rate=learning_rate)

        if gans_value_function is None:
            gans_value_function = MiniMax()

        GAN = GenerativeAdversarialNetworks(
            gans_value_function=gans_value_function,
            feature_matching=FeatureMatching(lambda1=0.01, lambda2=0.99))

        self.__noise_sampler = noise_sampler
        self.__true_sampler = true_sampler
        self.__generative_model = generative_model
        self.__discriminative_model = discriminative_model
        self.__GAN = GAN
        self.__time_fraction = time_fraction
Example #9
0
    def __init__(
        self,
        batch_size,
        layerable_cnn_list,
        learning_rate=1e-05,
        computable_loss=None,
        opt_params=None,
        verificatable_result=None,
        pre_learned_path_list=None,
        fc_w_arr=None,
        fc_activation_function=None,
        cnn=None,
        verbose_mode=False
    ):
        '''
        Init.

        Args:
            batch_size:                     Batch size in mini-batch.
            layerable_cnn_list:             `list` of `LayerableCNN`.
            learning_rate:                  Learning rate.
            computable_loss:                is-a `ComputableLoss`.
            opt_params:                     is-a `OptParams`.
            verificatable_result:           is-a `VerificateFunctionApproximation`.
            pre_learned_path_list:          `list` of file path that stored pre-learned parameters.
                                            This parameters will be refered only when `cnn` is `None`.

            fc_w_arr:                       `np.ndarray` of weight matrix in output layer.
            fc_activation_function:         is-a `ActivatingFunctionInterface`.
            cnn:                            is-a `ConvolutionalNeuralNetwork` as a model in this class.
                                            If not `None`, `self.__cnn` will be overrided by this `cnn`.
                                            If `None`, this class initialize `ConvolutionalNeuralNetwork`
                                            by default hyper parameters.

            verbose_mode:                   Verbose mode or not.
            
        '''
        logger = getLogger("pydbm")
        handler = StreamHandler()
        if verbose_mode is True:
            handler.setLevel(DEBUG)
            logger.setLevel(DEBUG)
        else:
            handler.setLevel(ERROR)
            logger.setLevel(ERROR)

        logger.addHandler(handler)

        self.__logger = getLogger("pyqlearning")
        handler = StreamHandler()
        if verbose_mode is True:
            self.__logger.setLevel(DEBUG)
        else:
            self.__logger.setLevel(ERROR)

        self.__logger.addHandler(handler)

        if computable_loss is None:
            computable_loss = MeanSquaredError()
        if verificatable_result is None:
            verificatable_result = VerificateFunctionApproximation()
        if opt_params is None:
            opt_params = Adam()
            opt_params.weight_limit = 0.5
            opt_params.dropout_rate = 0.0

        if cnn is None:
            cnn = ConvolutionalNeuralNetwork(
                # The `list` of `ConvolutionLayer`.
                layerable_cnn_list=layerable_cnn_list,
                # The number of epochs in mini-batch training.
                epochs=200,
                # The batch size.
                batch_size=batch_size,
                # Learning rate.
                learning_rate=learning_rate,
                # Loss function.
                computable_loss=computable_loss,
                # Optimizer.
                opt_params=opt_params,
                # Verification.
                verificatable_result=verificatable_result,
                # Pre-learned parameters.
                pre_learned_path_list=pre_learned_path_list,
                # Others.
                learning_attenuate_rate=0.1,
                attenuate_epoch=50
            )

        self.__cnn = cnn
        self.__batch_size = batch_size
        self.__computable_loss = computable_loss
        self.__learning_rate = learning_rate
        self.__verbose_mode = verbose_mode
        self.__fc_w_arr = fc_w_arr
        self.__fc_activation_function = fc_activation_function
        self.__q_shape = None
        self.__loss_list = []
Example #10
0
    def learn(self,
              sentence_list,
              token_master_list,
              hidden_neuron_count=200,
              epochs=100,
              batch_size=100,
              learning_rate=1e-05,
              learning_attenuate_rate=0.1,
              attenuate_epoch=50,
              bptt_tau=8,
              weight_limit=0.5,
              dropout_rate=0.5,
              test_size_rate=0.3):
        '''
        Init.
        
        Args:
            sentence_list:                  The `list` of sentences.
            token_master_list:              Unique `list` of tokens.
            hidden_neuron_count:            The number of units in hidden layer.
            epochs:                         Epochs of Mini-batch.
            bath_size:                      Batch size of Mini-batch.
            learning_rate:                  Learning rate.
            learning_attenuate_rate:        Attenuate the `learning_rate` by a factor of this value every `attenuate_epoch`.
            attenuate_epoch:                Attenuate the `learning_rate` by a factor of `learning_attenuate_rate` every `attenuate_epoch`.
                                            Additionally, in relation to regularization,
                                            this class constrains weight matrixes every `attenuate_epoch`.

            bptt_tau:                       Refereed maxinum step `t` in Backpropagation Through Time(BPTT).
            weight_limit:                   Regularization for weights matrix
                                            to repeat multiplying the weights matrix and `0.9`
                                            until $\sum_{j=0}^{n}w_{ji}^2 < weight\_limit$.

            dropout_rate:                   The probability of dropout.
            test_size_rate:                 Size of Test data set. If this value is `0`, the 
        '''
        observed_arr = self.__setup_dataset(sentence_list, token_master_list)

        self.__logger.debug("Shape of observed data points:")
        self.__logger.debug(observed_arr.shape)

        # Init.
        encoder_graph = EncoderGraph()

        # Activation function in LSTM.
        encoder_graph.observed_activating_function = LogisticFunction()
        encoder_graph.input_gate_activating_function = LogisticFunction()
        encoder_graph.forget_gate_activating_function = LogisticFunction()
        encoder_graph.output_gate_activating_function = LogisticFunction()
        encoder_graph.hidden_activating_function = LogisticFunction()
        encoder_graph.output_activating_function = LogisticFunction()

        # Initialization strategy.
        # This method initialize each weight matrices and biases in Gaussian distribution: `np.random.normal(size=hoge) * 0.01`.
        encoder_graph.create_rnn_cells(
            input_neuron_count=observed_arr.shape[-1],
            hidden_neuron_count=hidden_neuron_count,
            output_neuron_count=observed_arr.shape[-1])

        # Init.
        decoder_graph = DecoderGraph()

        # Activation function in LSTM.
        decoder_graph.observed_activating_function = LogisticFunction()
        decoder_graph.input_gate_activating_function = LogisticFunction()
        decoder_graph.forget_gate_activating_function = LogisticFunction()
        decoder_graph.output_gate_activating_function = LogisticFunction()
        decoder_graph.hidden_activating_function = LogisticFunction()
        decoder_graph.output_activating_function = LogisticFunction()

        # Initialization strategy.
        # This method initialize each weight matrices and biases in Gaussian distribution: `np.random.normal(size=hoge) * 0.01`.
        decoder_graph.create_rnn_cells(
            input_neuron_count=hidden_neuron_count,
            hidden_neuron_count=observed_arr.shape[-1],
            output_neuron_count=hidden_neuron_count)

        encoder_opt_params = EncoderAdam()
        encoder_opt_params.weight_limit = weight_limit
        encoder_opt_params.dropout_rate = dropout_rate

        encoder = Encoder(
            # Delegate `graph` to `LSTMModel`.
            graph=encoder_graph,
            # The number of epochs in mini-batch training.
            epochs=epochs,
            # The batch size.
            batch_size=batch_size,
            # Learning rate.
            learning_rate=learning_rate,
            # Attenuate the `learning_rate` by a factor of this value every `attenuate_epoch`.
            learning_attenuate_rate=learning_attenuate_rate,
            # Attenuate the `learning_rate` by a factor of `learning_attenuate_rate` every `attenuate_epoch`.
            attenuate_epoch=attenuate_epoch,
            # Refereed maxinum step `t` in BPTT. If `0`, this class referes all past data in BPTT.
            bptt_tau=bptt_tau,
            # Size of Test data set. If this value is `0`, the validation will not be executed.
            test_size_rate=test_size_rate,
            # Loss function.
            computable_loss=MeanSquaredError(),
            # Optimizer.
            opt_params=encoder_opt_params,
            # Verification function.
            verificatable_result=VerificateFunctionApproximation(),
            tol=0.0)

        decoder_opt_params = DecoderAdam()
        decoder_opt_params.weight_limit = weight_limit
        decoder_opt_params.dropout_rate = dropout_rate

        decoder = Decoder(
            # Delegate `graph` to `LSTMModel`.
            graph=decoder_graph,
            # The number of epochs in mini-batch training.
            epochs=epochs,
            # The batch size.
            batch_size=batch_size,
            # Learning rate.
            learning_rate=learning_rate,
            # Attenuate the `learning_rate` by a factor of this value every `attenuate_epoch`.
            learning_attenuate_rate=learning_attenuate_rate,
            # Attenuate the `learning_rate` by a factor of `learning_attenuate_rate` every `attenuate_epoch`.
            attenuate_epoch=attenuate_epoch,
            # Refereed maxinum step `t` in BPTT. If `0`, this class referes all past data in BPTT.
            bptt_tau=bptt_tau,
            # Size of Test data set. If this value is `0`, the validation will not be executed.
            test_size_rate=test_size_rate,
            # Loss function.
            computable_loss=MeanSquaredError(),
            # Optimizer.
            opt_params=decoder_opt_params,
            # Verification function.
            verificatable_result=VerificateFunctionApproximation(),
            tol=0.0)

        encoder_decoder_controller = EncoderDecoderController(
            encoder=encoder,
            decoder=decoder,
            epochs=epochs,
            batch_size=batch_size,
            learning_rate=learning_rate,
            learning_attenuate_rate=learning_attenuate_rate,
            attenuate_epoch=attenuate_epoch,
            test_size_rate=test_size_rate,
            computable_loss=MeanSquaredError(),
            verificatable_result=VerificateFunctionApproximation(),
            tol=0.0)

        # Learning.
        encoder_decoder_controller.learn(observed_arr, observed_arr)

        self.__controller = encoder_decoder_controller
        self.__token_master_list = token_master_list
Example #11
0
    def __init__(self,
                 batch_size,
                 lstm_model,
                 seq_len=10,
                 learning_rate=1e-05,
                 learning_attenuate_rate=0.1,
                 attenuate_epoch=50,
                 computable_loss=None,
                 opt_params=None,
                 verificatable_result=None,
                 verbose_mode=False):
        '''
        Init.

        Args:
            batch_size:                     Batch size in mini-batch.
            lstm_model:                     is-a `LSTMMode`.
            seq_len:                        The length of sequences.
            learning_rate:                  Learning rate.
            learning_attenuate_rate:        Attenuate the `learning_rate` by a factor of this value every `attenuate_epoch`.
            attenuate_epoch:                Attenuate the `learning_rate` by a factor of `learning_attenuate_rate` every `attenuate_epoch`.
            computable_loss:                is-a `ComputableLoss`.
            opt_params:                     is-a `OptParams`.
            verificatable_result:           is-a `VerificateFunctionApproximation`.
            verbose_mode:                   Verbose mode or not.
        '''
        logger = getLogger("pydbm")
        handler = StreamHandler()
        if verbose_mode is True:
            handler.setLevel(DEBUG)
            logger.setLevel(DEBUG)
        else:
            handler.setLevel(ERROR)
            logger.setLevel(ERROR)

        logger.addHandler(handler)

        self.__logger = getLogger("pyqlearning")
        handler = StreamHandler()
        if verbose_mode is True:
            self.__logger.setLevel(DEBUG)
        else:
            self.__logger.setLevel(ERROR)

        self.__logger.addHandler(handler)

        if isinstance(lstm_model, LSTMModel) is False:
            raise TypeError()

        if computable_loss is None:
            computable_loss = MeanSquaredError()
        if verificatable_result is None:
            verificatable_result = VerificateFunctionApproximation()
        if opt_params is None:
            opt_params = Adam()
            opt_params.weight_limit = 1e+10
            opt_params.dropout_rate = 0.0

        self.__lstm_model = lstm_model
        self.__seq_len = seq_len
        self.__batch_size = batch_size
        self.__computable_loss = computable_loss
        self.__learning_rate = learning_rate
        self.__learning_attenuate_rate = learning_attenuate_rate
        self.__attenuate_epoch = attenuate_epoch
        self.__verbose_mode = verbose_mode
        self.__loss_list = []
        self.__next_action_arr_list = []
        self.__real_q_arr_list = []
        self.__predicted_q_arr_list = []
        self.__q_arr = None
        self.__epoch_counter = 0
Example #12
0
    def __init__(self,
                 batch_size,
                 nn_layer_list,
                 learning_rate=1e-05,
                 computable_loss=None,
                 opt_params=None,
                 verificatable_result=None,
                 nn=None,
                 verbose_mode=False):
        '''
        Init.

        Args:
            batch_size:                     Batch size in mini-batch.
            nn_layer_list:                  `list` of `NNLayer`.
            learning_rate:                  Learning rate.
            computable_loss:                is-a `ComputableLoss`.
                                            This parameters will be refered only when `nn` is `None`.

            opt_params:                     is-a `OptParams`.
                                            This parameters will be refered only when `nn` is `None`.

            verificatable_result:           is-a `VerificateFunctionApproximation`.
                                            This parameters will be refered only when `nn` is `None`.

            nn:                             is-a `NeuralNetwork` as a model in this class.
                                            If not `None`, `self.__nn` will be overrided by this `nn`.
                                            If `None`, this class initialize `NeuralNetwork`
                                            by default hyper parameters.

            verbose_mode:                   Verbose mode or not.

        '''
        logger = getLogger("pydbm")
        handler = StreamHandler()
        if verbose_mode is True:
            handler.setLevel(DEBUG)
            logger.setLevel(DEBUG)
        else:
            handler.setLevel(ERROR)
            logger.setLevel(ERROR)

        logger.addHandler(handler)

        if nn is None:
            if computable_loss is None:
                computable_loss = MeanSquaredError()

            if isinstance(computable_loss, ComputableLoss) is False:
                raise TypeError()

            if verificatable_result is None:
                verificatable_result = VerificateFunctionApproximation()

            if isinstance(verificatable_result, VerificatableResult) is False:
                raise TypeError()

            if opt_params is None:
                opt_params = Adam()
                opt_params.weight_limit = 0.5
                opt_params.dropout_rate = 0.0

            if isinstance(opt_params, OptParams) is False:
                raise TypeError()

            nn = NeuralNetwork(
                # The `list` of `ConvolutionLayer`.
                nn_layer_list=nn_layer_list,
                # The number of epochs in mini-batch training.
                epochs=200,
                # The batch size.
                batch_size=batch_size,
                # Learning rate.
                learning_rate=learning_rate,
                # Loss function.
                computable_loss=computable_loss,
                # Optimizer.
                opt_params=opt_params,
                # Verification.
                verificatable_result=verificatable_result,
                # Pre-learned parameters.
                pre_learned_path_list=None,
                # Others.
                learning_attenuate_rate=0.1,
                attenuate_epoch=50)

        self.__nn = nn
        self.__batch_size = batch_size
        self.__learning_rate = learning_rate
        self.__verbose_mode = verbose_mode
        self.__q_shape = None
        self.__loss_list = []
Example #13
0
    def __build_encoder_decoder_controller(self,
                                           input_neuron_count=20,
                                           hidden_neuron_count=20,
                                           weight_limit=0.5,
                                           dropout_rate=0.5,
                                           epochs=1000,
                                           batch_size=20,
                                           learning_rate=1e-05,
                                           attenuate_epoch=50,
                                           learning_attenuate_rate=0.1,
                                           seq_len=8,
                                           bptt_tau=8,
                                           test_size_rate=0.3,
                                           tol=1e-10,
                                           tld=100.0):
        # Init.
        encoder_graph = EncoderGraph()

        # Activation function in LSTM.
        encoder_graph.observed_activating_function = LogisticFunction()
        encoder_graph.input_gate_activating_function = LogisticFunction()
        encoder_graph.forget_gate_activating_function = LogisticFunction()
        encoder_graph.output_gate_activating_function = LogisticFunction()
        encoder_graph.hidden_activating_function = LogisticFunction()
        encoder_graph.output_activating_function = LogisticFunction()

        # Initialization strategy.
        # This method initialize each weight matrices and biases in Gaussian distribution: `np.random.normal(size=hoge) * 0.01`.
        encoder_graph.create_rnn_cells(input_neuron_count=input_neuron_count,
                                       hidden_neuron_count=hidden_neuron_count,
                                       output_neuron_count=1)
        encoder_opt_params = EncoderAdam()
        encoder_opt_params.weight_limit = weight_limit
        encoder_opt_params.dropout_rate = dropout_rate

        encoder = Encoder(
            # Delegate `graph` to `LSTMModel`.
            graph=encoder_graph,
            # The number of epochs in mini-batch training.
            epochs=100,
            # The batch size.
            batch_size=batch_size,
            # Learning rate.
            learning_rate=learning_rate,
            # Attenuate the `learning_rate` by a factor of this value every `attenuate_epoch`.
            learning_attenuate_rate=0.1,
            # Attenuate the `learning_rate` by a factor of `learning_attenuate_rate` every `attenuate_epoch`.
            attenuate_epoch=50,
            # Refereed maxinum step `t` in BPTT. If `0`, this class referes all past data in BPTT.
            bptt_tau=8,
            # Size of Test data set. If this value is `0`, the validation will not be executed.
            test_size_rate=0.3,
            # Loss function.
            computable_loss=MeanSquaredError(),
            # Optimizer.
            opt_params=encoder_opt_params,
            # Verification function.
            verificatable_result=VerificateFunctionApproximation())

        # Init.
        decoder_graph = DecoderGraph()

        # Activation function in LSTM.
        decoder_graph.observed_activating_function = LogisticFunction()
        decoder_graph.input_gate_activating_function = LogisticFunction()
        decoder_graph.forget_gate_activating_function = LogisticFunction()
        decoder_graph.output_gate_activating_function = LogisticFunction()
        decoder_graph.hidden_activating_function = LogisticFunction()
        decoder_graph.output_activating_function = SoftmaxFunction()

        # Initialization strategy.
        # This method initialize each weight matrices and biases in Gaussian distribution: `np.random.normal(size=hoge) * 0.01`.
        decoder_graph.create_rnn_cells(input_neuron_count=hidden_neuron_count,
                                       hidden_neuron_count=hidden_neuron_count,
                                       output_neuron_count=input_neuron_count)
        decoder_opt_params = DecoderAdam()
        decoder_opt_params.weight_limit = weight_limit
        decoder_opt_params.dropout_rate = dropout_rate

        decoder = Decoder(
            # Delegate `graph` to `LSTMModel`.
            graph=decoder_graph,
            # The number of epochs in mini-batch training.
            epochs=100,
            # The batch size.
            batch_size=batch_size,
            # Learning rate.
            learning_rate=learning_rate,
            # Attenuate the `learning_rate` by a factor of this value every `attenuate_epoch`.
            learning_attenuate_rate=0.1,
            # Attenuate the `learning_rate` by a factor of `learning_attenuate_rate` every `attenuate_epoch`.
            attenuate_epoch=50,
            # The length of sequences.
            seq_len=seq_len,
            # Refereed maxinum step `t` in BPTT. If `0`, this class referes all past data in BPTT.
            bptt_tau=bptt_tau,
            # Size of Test data set. If this value is `0`, the validation will not be executed.
            test_size_rate=0.3,
            # Loss function.
            computable_loss=MeanSquaredError(),
            # Optimizer.
            opt_params=decoder_opt_params,
            # Verification function.
            verificatable_result=VerificateFunctionApproximation())

        encoder_decoder_controller = EncoderDecoderController(
            encoder=encoder,
            decoder=decoder,
            epochs=epochs,
            batch_size=batch_size,
            learning_rate=learning_rate,
            learning_attenuate_rate=learning_attenuate_rate,
            attenuate_epoch=attenuate_epoch,
            test_size_rate=test_size_rate,
            computable_loss=MeanSquaredError(),
            verificatable_result=VerificateFunctionApproximation(),
            tol=tol,
            tld=tld)

        return encoder_decoder_controller
Example #14
0
    def __init__(
        self,
        batch_size,
        nn_layer_list,
        learning_rate=1e-05,
        learning_attenuate_rate=0.1,
        attenuate_epoch=50,
        computable_loss=None,
        opt_params=None,
        verificatable_result=None,
        pre_learned_path_list=None,
        nn=None
    ):
        '''
        Init.

        Args:
            batch_size:                     Batch size in mini-batch.
            nn_layer_list:                  `list` of `NNLayer`.
            learning_rate:                  Learning rate.
            learning_attenuate_rate:        Attenuate the `learning_rate` by a factor of this value every `attenuate_epoch`.
            attenuate_epoch:                Attenuate the `learning_rate` by a factor of `learning_attenuate_rate` every `attenuate_epoch`.
                                            Additionally, in relation to regularization,
                                            this class constrains weight matrixes every `attenuate_epoch`.

            computable_loss:                is-a `ComputableLoss`.
            opt_params:                     is-a `OptParams`.
            verificatable_result:           is-a `VerificateFunctionApproximation`.
            pre_learned_path_list:          `list` of file path that stored pre-learned parameters.
                                            This parameters will be refered only when `cnn` is `None`.

            nn:                             is-a `NeuralNetwork` as a model in this class.
                                            If not `None`, `self.__nn` will be overrided by this `nn`.
                                            If `None`, this class initialize `NeuralNetwork`
                                            by default hyper parameters.

        '''
        if computable_loss is None:
            computable_loss = MeanSquaredError()
        if verificatable_result is None:
            verificatable_result = VerificateFunctionApproximation()
        if opt_params is None:
            opt_params = Adam()
            opt_params.weight_limit = 1e+10
            opt_params.dropout_rate = 0.0

        if nn is None:
            nn = NeuralNetwork(
                # The `list` of `ConvolutionLayer`.
                nn_layer_list=nn_layer_list,
                # The number of epochs in mini-batch training.
                epochs=200,
                # The batch size.
                batch_size=batch_size,
                # Learning rate.
                learning_rate=learning_rate,
                # Loss function.
                computable_loss=computable_loss,
                # Optimizer.
                opt_params=opt_params,
                # Verification.
                verificatable_result=verificatable_result,
                # Pre-learned parameters.
                pre_learned_path_list=pre_learned_path_list,
                # Others.
                learning_attenuate_rate=learning_attenuate_rate,
                attenuate_epoch=attenuate_epoch
            )

        self.__nn = nn
        self.__batch_size = batch_size
        self.__computable_loss = computable_loss
        self.__learning_rate = learning_rate
        self.__q_shape = None
        self.__loss_list = []
        self.__epoch_counter = 0
        self.__learning_attenuate_rate = learning_attenuate_rate
        self.__attenuate_epoch = attenuate_epoch

        logger = getLogger("pygan")
        self.__logger = logger
Example #15
0
    def __init__(self,
                 batch_size,
                 layerable_cnn_list,
                 cnn_output_graph,
                 learning_rate=1e-05,
                 learning_attenuate_rate=0.1,
                 attenuate_epoch=50,
                 computable_loss=None,
                 opt_params=None,
                 verificatable_result=None,
                 pre_learned_path_list=None,
                 pre_learned_output_path=None,
                 cnn=None,
                 verbose_mode=False):
        '''
        Init.

        Args:
            batch_size:                     Batch size in mini-batch.
            layerable_cnn_list:             `list` of `LayerableCNN`.
            cnn_output_graph:               Computation graph which is-a `CNNOutputGraph` to compute parameters in output layer.
            learning_rate:                  Learning rate.
            learning_attenuate_rate:        Attenuate the `learning_rate` by a factor of this value every `attenuate_epoch`.
            attenuate_epoch:                Attenuate the `learning_rate` by a factor of `learning_attenuate_rate` every `attenuate_epoch`.
            computable_loss:                is-a `ComputableLoss`.
            opt_params:                     is-a `OptParams`.
            verificatable_result:           is-a `VerificateFunctionApproximation`.
            pre_learned_path_list:          `list` of file path that stored pre-learned parameters.
                                            This parameters will be refered only when `cnn` is `None`.

            pre_learned_output_path:        File path that stores pre-learned parameters.

            cnn:                            is-a `ConvolutionalNeuralNetwork` as a model in this class.
                                            If not `None`, `self.__cnn` will be overrided by this `cnn`.
                                            If `None`, this class initialize `ConvolutionalNeuralNetwork`
                                            by default hyper parameters.

            verbose_mode:                   Verbose mode or not.
            
        '''
        logger = getLogger("pydbm")
        handler = StreamHandler()
        if verbose_mode is True:
            handler.setLevel(DEBUG)
            logger.setLevel(DEBUG)
        else:
            handler.setLevel(ERROR)
            logger.setLevel(ERROR)

        logger.addHandler(handler)

        self.__logger = getLogger("pyqlearning")
        handler = StreamHandler()
        if verbose_mode is True:
            self.__logger.setLevel(DEBUG)
        else:
            self.__logger.setLevel(ERROR)

        self.__logger.addHandler(handler)

        if computable_loss is None:
            computable_loss = MeanSquaredError()
        if verificatable_result is None:
            verificatable_result = VerificateFunctionApproximation()
        if opt_params is None:
            opt_params = Adam()
            opt_params.weight_limit = 1e+10
            opt_params.dropout_rate = 0.0

        if cnn is None:
            cnn = ConvolutionalNeuralNetwork(
                # The `list` of `ConvolutionLayer`.
                layerable_cnn_list=layerable_cnn_list,
                # The number of epochs in mini-batch training.
                epochs=200,
                # The batch size.
                batch_size=batch_size,
                # Learning rate.
                learning_rate=learning_rate,
                # Loss function.
                computable_loss=computable_loss,
                # Optimizer.
                opt_params=opt_params,
                # Verification.
                verificatable_result=verificatable_result,
                # Pre-learned parameters.
                pre_learned_path_list=pre_learned_path_list,
                # Others.
                learning_attenuate_rate=learning_attenuate_rate,
                attenuate_epoch=attenuate_epoch)
            cnn.setup_output_layer(cnn_output_graph, pre_learned_output_path)

        self.__cnn = cnn
        self.__batch_size = batch_size
        self.__computable_loss = computable_loss
        self.__learning_rate = learning_rate
        self.__learning_attenuate_rate = learning_attenuate_rate
        self.__attenuate_epoch = attenuate_epoch
        self.__verbose_mode = verbose_mode
        self.__loss_list = []
        self.__epoch_counter = 0
Example #16
0
    def __init__(self,
                 batch_size=20,
                 learning_rate=1e-10,
                 opt_params=None,
                 convolutional_auto_encoder=None,
                 deconvolution_layer_list=None,
                 gray_scale_flag=True,
                 channel=None):
        '''
        Init.

        Args:
            batch_size:                     Batch size in mini-batch.
            learning_rate:                  Learning rate.
            convolutional_auto_encoder:     is-a `pydbm.cnn.convolutionalneuralnetwork.convolutional_auto_encoder.ConvolutionalAutoEncoder`.
            deconvolution_layer_list:       `list` of `DeconvolutionLayer`.
            gray_scale_flag:                Gray scale or not.
                                            This parameter will be refered when `channel` is None.
                                            If `True`, the channel will be `1`. If `False`, the channel will be `3`.

            channel:                        Channel.
        '''
        if channel is None:
            if gray_scale_flag is True:
                channel = 1
            else:
                channel = 3

        if opt_params is None:
            opt_params = Adam()
            opt_params.dropout_rate = 0.0

        if isinstance(opt_params, OptParams) is False:
            raise TypeError()

        scale = 0.01
        if convolutional_auto_encoder is None:
            conv1 = ConvolutionLayer1(
                ConvGraph1(activation_function=TanhFunction(),
                           filter_num=batch_size,
                           channel=channel,
                           kernel_size=3,
                           scale=scale,
                           stride=1,
                           pad=1))

            conv2 = ConvolutionLayer2(
                ConvGraph2(activation_function=TanhFunction(),
                           filter_num=batch_size,
                           channel=batch_size,
                           kernel_size=3,
                           scale=scale,
                           stride=1,
                           pad=1))

            convolutional_auto_encoder = CAE(
                layerable_cnn_list=[conv1, conv2],
                epochs=100,
                batch_size=batch_size,
                learning_rate=1e-05,
                learning_attenuate_rate=0.1,
                attenuate_epoch=25,
                computable_loss=MeanSquaredError(),
                opt_params=opt_params,
                verificatable_result=VerificateFunctionApproximation(),
                test_size_rate=0.3,
                tol=1e-15,
                save_flag=False)

        if deconvolution_layer_list is None:
            deconvolution_layer_list = [
                DeconvolutionLayer(
                    DeCNNGraph(activation_function=TanhFunction(),
                               filter_num=batch_size,
                               channel=channel,
                               kernel_size=3,
                               scale=scale,
                               stride=1,
                               pad=1))
            ]

        self.__convolutional_auto_encoder = convolutional_auto_encoder
        self.__deconvolution_layer_list = deconvolution_layer_list
        self.__opt_params = opt_params
        self.__learning_rate = learning_rate
        self.__batch_size = batch_size
        self.__saved_img_n = 0
        self.__attenuate_epoch = 50

        self.__epoch_counter = 0

        logger = getLogger("pygan")
        self.__logger = logger
Example #17
0
    def __init__(self,
                 batch_size,
                 conv_lstm_model,
                 seq_len=10,
                 learning_rate=1e-05,
                 computable_loss=None,
                 opt_params=None,
                 verificatable_result=None,
                 verbose_mode=False):
        '''
        Init.

        Args:
            batch_size:                     Batch size in mini-batch.
            conv_lstm_model:                is-a `ConvLSTMModel`.
            seq_len:                        The length of sequences.
            learning_rate:                  Learning rate.
            computable_loss:                is-a `ComputableLoss`.
            opt_params:                     is-a `OptParams`.
            verificatable_result:           is-a `VerificateFunctionApproximation`.
            verbose_mode:                   Verbose mode or not.

        '''
        logger = getLogger("pydbm")
        handler = StreamHandler()
        if verbose_mode is True:
            handler.setLevel(DEBUG)
            logger.setLevel(DEBUG)
        else:
            handler.setLevel(ERROR)
            logger.setLevel(ERROR)

        logger.addHandler(handler)

        self.__logger = getLogger("pyqlearning")
        handler = StreamHandler()
        if verbose_mode is True:
            self.__logger.setLevel(DEBUG)
        else:
            self.__logger.setLevel(ERROR)

        self.__logger.addHandler(handler)

        if isinstance(conv_lstm_model, ConvLSTMModel) is False:
            raise TypeError()

        if computable_loss is None:
            computable_loss = MeanSquaredError()
        if verificatable_result is None:
            verificatable_result = VerificateFunctionApproximation()
        if opt_params is None:
            opt_params = Adam()
            opt_params.weight_limit = 0.5
            opt_params.dropout_rate = 0.0

        self.__conv_lstm_model = conv_lstm_model
        self.__seq_len = seq_len
        self.__batch_size = batch_size
        self.__computable_loss = computable_loss
        self.__learning_rate = learning_rate
        self.__verbose_mode = verbose_mode
        self.__loss_list = []
    def __init__(self,
                 deconvolution_model,
                 batch_size,
                 layerable_cnn_list,
                 learning_rate=1e-05,
                 learning_attenuate_rate=0.1,
                 attenuate_epoch=50,
                 computable_loss=None,
                 opt_params=None,
                 verificatable_result=None,
                 cnn=None,
                 condition_noise_sampler=None):
        '''
        Init.

        Args:
            deconvolution_model:            is-a `DeconvolutionModel`.
            batch_size:                     Batch size in mini-batch.
            layerable_cnn_list:             `list` of `LayerableCNN`.
            cnn_output_graph:               is-a `CNNOutputGraph`.
            learning_rate:                  Learning rate.
            learning_attenuate_rate:        Attenuate the `learning_rate` by a factor of this value every `attenuate_epoch`.
            attenuate_epoch:                Attenuate the `learning_rate` by a factor of `learning_attenuate_rate` every `attenuate_epoch`.
                                            Additionally, in relation to regularization,
                                            this class constrains weight matrixes every `attenuate_epoch`.

            computable_loss:                is-a `ComputableLoss`.
                                            This parameters will be refered only when `cnn` is `None`.

            opt_params:                     is-a `OptParams`.
                                            This parameters will be refered only when `cnn` is `None`.

            verificatable_result:           is-a `VerificateFunctionApproximation`.
                                            This parameters will be refered only when `cnn` is `None`.

            cnn:                            is-a `ConvolutionalNeuralNetwork` as a model in this class.
                                            If not `None`, `self.__cnn` will be overrided by this `cnn`.
                                            If `None`, this class initialize `ConvolutionalNeuralNetwork`
                                            by default hyper parameters.

            condition_noise_sampler:         is-a `NoiseSampler` to add noise to outputs from `Conditioner`.

        '''
        if isinstance(deconvolution_model, DeconvolutionModel) is False:
            raise TypeError()
        self.__deconvolution_model = deconvolution_model

        if cnn is None:
            for layerable_cnn in layerable_cnn_list:
                if isinstance(layerable_cnn, LayerableCNN) is False:
                    raise TypeError()

        self.__layerable_cnn_list = layerable_cnn_list
        self.__learning_rate = learning_rate
        self.__opt_params = opt_params

        if cnn is None:
            if computable_loss is None:
                computable_loss = MeanSquaredError()
            if isinstance(computable_loss, ComputableLoss) is False:
                raise TypeError()

            if verificatable_result is None:
                verificatable_result = VerificateFunctionApproximation()
            if isinstance(verificatable_result, VerificatableResult) is False:
                raise TypeError()

            if opt_params is None:
                opt_params = Adam()
                opt_params.weight_limit = 1e+10
                opt_params.dropout_rate = 0.0
            if isinstance(opt_params, OptParams) is False:
                raise TypeError()

            cnn = ConvolutionalNeuralNetwork(
                layerable_cnn_list=layerable_cnn_list,
                computable_loss=computable_loss,
                opt_params=opt_params,
                verificatable_result=verificatable_result,
                epochs=100,
                batch_size=batch_size,
                learning_rate=learning_rate,
                learning_attenuate_rate=learning_attenuate_rate,
                test_size_rate=0.3,
                tol=1e-15,
                tld=100.0,
                save_flag=False,
                pre_learned_path_list=None)

        self.__cnn = cnn
        self.__condition_noise_sampler = condition_noise_sampler
        self.__batch_size = batch_size
        self.__computable_loss = computable_loss
        self.__learning_rate = learning_rate
        self.__attenuate_epoch = attenuate_epoch
        self.__learning_attenuate_rate = learning_attenuate_rate

        self.__q_shape = None
        self.__loss_list = []
        self.__epoch_counter = 0
        logger = getLogger("pygan")
        self.__logger = logger
Example #19
0
    def __init__(self,
                 batch_size,
                 nn_layer_list,
                 learning_rate=1e-05,
                 computable_loss=None,
                 opt_params=None,
                 verificatable_result=None,
                 nn=None,
                 feature_matching_layer=0):
        '''
        Init.

        Args:
            batch_size:                     Batch size in mini-batch.
            nn_layer_list:                  `list` of `NNLayer`.
            learning_rate:                  Learning rate.
            computable_loss:                is-a `ComputableLoss`.
                                            This parameters will be refered only when `nn` is `None`.

            opt_params:                     is-a `OptParams`.
                                            This parameters will be refered only when `nn` is `None`.

            verificatable_result:           is-a `VerificateFunctionApproximation`.
                                            This parameters will be refered only when `nn` is `None`.

            nn:                             is-a `NeuralNetwork` as a model in this class.
                                            If not `None`, `self.__nn` will be overrided by this `nn`.
                                            If `None`, this class initialize `NeuralNetwork`
                                            by default hyper parameters.

            feature_matching_layer:         Key of layer number for feature matching forward/backward.

        '''
        if nn is None:
            if computable_loss is None:
                computable_loss = MeanSquaredError()

            if isinstance(computable_loss, ComputableLoss) is False:
                raise TypeError()

            if verificatable_result is None:
                verificatable_result = VerificateFunctionApproximation()

            if isinstance(verificatable_result, VerificatableResult) is False:
                raise TypeError()

            if opt_params is None:
                opt_params = Adam()
                opt_params.weight_limit = 0.5
                opt_params.dropout_rate = 0.0

            if isinstance(opt_params, OptParams) is False:
                raise TypeError()

            nn = NeuralNetwork(
                # The `list` of `ConvolutionLayer`.
                nn_layer_list=nn_layer_list,
                # The number of epochs in mini-batch training.
                epochs=200,
                # The batch size.
                batch_size=batch_size,
                # Learning rate.
                learning_rate=learning_rate,
                # Loss function.
                computable_loss=computable_loss,
                # Optimizer.
                opt_params=opt_params,
                # Verification.
                verificatable_result=verificatable_result,
                # Pre-learned parameters.
                pre_learned_path_list=None,
                # Others.
                learning_attenuate_rate=0.1,
                attenuate_epoch=50)

        self.__nn = nn
        self.__batch_size = batch_size
        self.__learning_rate = learning_rate
        self.__q_shape = None
        self.__loss_list = []
        self.__feature_matching_layer = feature_matching_layer
        self.__epoch_counter = 0
        logger = getLogger("pygan")
        self.__logger = logger
Example #20
0
    def __init__(self,
                 convolutional_auto_encoder=None,
                 batch_size=10,
                 channel=1,
                 learning_rate=1e-10,
                 learning_attenuate_rate=0.1,
                 attenuate_epoch=50,
                 opt_params=None,
                 feature_matching_layer=0):
        '''
        Init.
        
        Args:
            convolutional_auto_encoder:         is-a `pydbm.cnn.convolutionalneuralnetwork.convolutionalautoencoder.ConvolutionalLadderNetworks`.
            learning_rate:                      Learning rate.
            batch_size:                         Batch size in mini-batch.
            learning_rate:                      Learning rate.
            learning_attenuate_rate:            Attenuate the `learning_rate` by a factor of this value every `attenuate_epoch`.
            attenuate_epoch:                    Attenuate the `learning_rate` by a factor of `learning_attenuate_rate` every `attenuate_epoch`.
                                                Additionally, in relation to regularization,
                                                this class constrains weight matrixes every `attenuate_epoch`.

            opt_params:                         is-a `pydbm.optimization.opt_params.OptParams`.
            feature_matching_layer:             Key of layer number for feature matching forward/backward.

        '''

        if isinstance(convolutional_auto_encoder,
                      CLN) is False and convolutional_auto_encoder is not None:
            raise TypeError(
                "The type of `convolutional_auto_encoder` must be `pydbm.cnn.convolutionalneuralnetwork.convolutional_auto_encoder.ConvolutionalAutoEncoder`."
            )

        if opt_params is None:
            opt_params = Adam()
            opt_params.weight_limit = 1e+10
            opt_params.dropout_rate = 0.0

        if convolutional_auto_encoder is None:
            scale = 0.01
            conv1 = ConvolutionLayer1(
                ConvGraph1(activation_function=TanhFunction(),
                           filter_num=batch_size,
                           channel=channel,
                           kernel_size=3,
                           scale=scale,
                           stride=1,
                           pad=1))

            conv2 = ConvolutionLayer2(
                ConvGraph2(activation_function=TanhFunction(),
                           filter_num=batch_size,
                           channel=batch_size,
                           kernel_size=3,
                           scale=scale,
                           stride=1,
                           pad=1))

            convolutional_auto_encoder = CLN(
                layerable_cnn_list=[conv1, conv2],
                epochs=100,
                batch_size=batch_size,
                learning_rate=learning_rate,
                learning_attenuate_rate=learning_attenuate_rate,
                attenuate_epoch=attenuate_epoch,
                computable_loss=MeanSquaredError(),
                opt_params=opt_params,
                verificatable_result=VerificateFunctionApproximation(),
                test_size_rate=0.3,
                tol=1e-15,
                save_flag=False)

        self.__convolutional_auto_encoder = convolutional_auto_encoder
        self.__learning_rate = learning_rate
        self.__attenuate_epoch = attenuate_epoch
        self.__learning_attenuate_rate = learning_attenuate_rate

        self.__epoch_counter = 0
        self.__feature_matching_layer = feature_matching_layer
        logger = getLogger("pygan")
        self.__logger = logger

        super().__init__(convolutional_auto_encoder=convolutional_auto_encoder,
                         batch_size=batch_size,
                         channel=channel,
                         learning_rate=learning_rate,
                         learning_attenuate_rate=learning_attenuate_rate,
                         attenuate_epoch=attenuate_epoch,
                         opt_params=opt_params,
                         feature_matching_layer=feature_matching_layer)

        self.__alpha_loss_list = []
        self.__sigma_loss_list = []
        self.__mu_loss_list = []
Example #21
0
    def __init__(self,
                 token_list,
                 epochs=300,
                 skip_n=1,
                 batch_size=50,
                 feature_dim=20,
                 scale=1e-05,
                 learning_rate=1e-05,
                 auto_encoder=None):
        '''
        Initialize.
        
        Args:
            token_list:         The list of all tokens in all sentences.
            skip_n:             N of n-gram.
            training_count:     The epochs.
            batch_size:         Batch size.
            learning_rate:      Learning rate.
            feature_dim:        The dimension of feature points.
        '''
        if auto_encoder is not None and isinstance(auto_encoder,
                                                   SimpleAutoEncoder) is False:
            raise TypeError()

        self.__logger = getLogger("pydbm")
        self.__token_arr = np.array(token_list)
        self.__token_uniquie_arr = np.array(list(set(token_list)))

        if auto_encoder is None:
            activation_function = TanhFunction()

            encoder_graph = EncoderGraph(
                activation_function=activation_function,
                hidden_neuron_count=self.__token_uniquie_arr.shape[0],
                output_neuron_count=feature_dim,
                scale=scale,
            )

            encoder_layer = EncoderLayer(encoder_graph)

            opt_params = Adam()
            opt_params.dropout_rate = 0.5

            encoder = Encoder(
                nn_layer_list=[
                    encoder_layer,
                ],
                epochs=epochs,
                batch_size=batch_size,
                learning_rate=learning_rate,
                learning_attenuate_rate=1.0,
                attenuate_epoch=50,
                computable_loss=CrossEntropy(),
                opt_params=opt_params,
                verificatable_result=VerificateFunctionApproximation(),
                test_size_rate=0.3,
                tol=1e-15)

            decoder_graph = DecoderGraph(
                activation_function=SoftmaxFunction(),
                hidden_neuron_count=feature_dim,
                output_neuron_count=self.__token_uniquie_arr.shape[0],
                scale=scale,
            )

            decoder_layer = DecoderLayer(decoder_graph)

            opt_params = Adam()
            opt_params.dropout_rate = 0.0

            decoder = Decoder(
                nn_layer_list=[
                    decoder_layer,
                ],
                epochs=epochs,
                batch_size=batch_size,
                learning_rate=learning_rate,
                learning_attenuate_rate=1.0,
                attenuate_epoch=50,
                computable_loss=CrossEntropy(),
                opt_params=opt_params,
                verificatable_result=VerificateFunctionApproximation(),
                test_size_rate=0.3,
                tol=1e-15)

            auto_encoder = SimpleAutoEncoder(
                encoder=encoder,
                decoder=decoder,
                epochs=epochs,
                batch_size=batch_size,
                learning_rate=learning_rate,
                learning_attenuate_rate=1.0,
                attenuate_epoch=50,
                computable_loss=CrossEntropy(),
                verificatable_result=VerificateFunctionApproximation(),
                test_size_rate=0.3,
                tol=1e-15,
            )

        self.__auto_encoder = auto_encoder

        self.__epochs = epochs
        self.__batch_size = batch_size
        self.__skip_n = skip_n
Example #22
0
def Main(params_dict):

    logger = getLogger("pydbm")
    handler = StreamHandler()
    if params_dict["debug_mode"] is True:
        handler.setLevel(DEBUG)
        logger.setLevel(DEBUG)
    else:
        handler.setLevel(ERROR)
        logger.setLevel(ERROR)

    logger.addHandler(handler)

    epochs = params_dict["epochs"]
    batch_size = params_dict["batch_size"]
    seq_len = params_dict["seq_len"]
    channel = params_dict["channel"]
    height = params_dict["height"]
    width = params_dict["width"]
    scale = params_dict["scale"]
    training_image_dir = params_dict["training_image_dir"]
    test_image_dir = params_dict["test_image_dir"]

    enc_dim = batch_size * height * width
    dec_dim = batch_size * height * width

    feature_generator = ImageGenerator(epochs=epochs,
                                       batch_size=batch_size,
                                       training_image_dir=training_image_dir,
                                       test_image_dir=test_image_dir,
                                       seq_len=seq_len,
                                       gray_scale_flag=True,
                                       wh_size_tuple=(height, width),
                                       norm_mode="z_score")

    # Init.
    encoder_graph = EncoderGraph()

    # Activation function in LSTM.
    encoder_graph.observed_activating_function = TanhFunction()
    encoder_graph.input_gate_activating_function = LogisticFunction()
    encoder_graph.forget_gate_activating_function = LogisticFunction()
    encoder_graph.output_gate_activating_function = LogisticFunction()
    encoder_graph.hidden_activating_function = TanhFunction()
    encoder_graph.output_activating_function = LogisticFunction()

    # Initialization strategy.
    # This method initialize each weight matrices and biases in Gaussian distribution: `np.random.normal(size=hoge) * 0.01`.
    encoder_graph.create_rnn_cells(input_neuron_count=enc_dim,
                                   hidden_neuron_count=200,
                                   output_neuron_count=enc_dim)

    # Optimizer for Encoder.
    encoder_opt_params = EncoderAdam()
    encoder_opt_params.weight_limit = 0.5
    encoder_opt_params.dropout_rate = 0.5

    encoder = Encoder(
        # Delegate `graph` to `LSTMModel`.
        graph=encoder_graph,
        # The number of epochs in mini-batch training.
        epochs=epochs,
        # The batch size.
        batch_size=batch_size,
        # Learning rate.
        learning_rate=1e-05,
        # Attenuate the `learning_rate` by a factor of this value every `attenuate_epoch`.
        learning_attenuate_rate=0.1,
        # Attenuate the `learning_rate` by a factor of `learning_attenuate_rate` every `attenuate_epoch`.
        attenuate_epoch=50,
        # Refereed maxinum step `t` in BPTT. If `0`, this class referes all past data in BPTT.
        bptt_tau=8,
        # Size of Test data set. If this value is `0`, the validation will not be executed.
        test_size_rate=0.3,
        # Loss function.
        computable_loss=MeanSquaredError(),
        # Optimizer.
        opt_params=encoder_opt_params,
        # Verification function.
        verificatable_result=VerificateFunctionApproximation(),
        # Tolerance for the optimization.
        # When the loss or score is not improving by at least tol
        # for two consecutive iterations, convergence is considered
        # to be reached and training stops.
        tol=0.0)

    # Init.
    decoder_graph = DecoderGraph()

    # Activation function in LSTM.
    decoder_graph.observed_activating_function = TanhFunction()
    decoder_graph.input_gate_activating_function = LogisticFunction()
    decoder_graph.forget_gate_activating_function = LogisticFunction()
    decoder_graph.output_gate_activating_function = LogisticFunction()
    decoder_graph.hidden_activating_function = TanhFunction()
    decoder_graph.output_activating_function = LogisticFunction()

    # Initialization strategy.
    # This method initialize each weight matrices and biases in Gaussian distribution: `np.random.normal(size=hoge) * 0.01`.
    decoder_graph.create_rnn_cells(input_neuron_count=200,
                                   hidden_neuron_count=dec_dim,
                                   output_neuron_count=200)

    # Optimizer for Decoder.
    decoder_opt_params = DecoderAdam()
    decoder_opt_params.weight_limit = 0.5
    decoder_opt_params.dropout_rate = 0.5

    decoder = Decoder(
        # Delegate `graph` to `LSTMModel`.
        graph=decoder_graph,
        # The number of epochs in mini-batch training.
        epochs=epochs,
        # The batch size.
        batch_size=batch_size,
        # Learning rate.
        learning_rate=1e-05,
        # Attenuate the `learning_rate` by a factor of this value every `attenuate_epoch`.
        learning_attenuate_rate=0.1,
        # Attenuate the `learning_rate` by a factor of `learning_attenuate_rate` every `attenuate_epoch`.
        attenuate_epoch=50,
        # Refereed maxinum step `t` in BPTT. If `0`, this class referes all past data in BPTT.
        bptt_tau=8,
        # Size of Test data set. If this value is `0`, the validation will not be executed.
        test_size_rate=0.3,
        # Loss function.
        computable_loss=MeanSquaredError(),
        # Optimizer.
        opt_params=decoder_opt_params,
        # Verification function.
        verificatable_result=VerificateFunctionApproximation(),
        # Tolerance for the optimization.
        # When the loss or score is not improving by at least tol
        # for two consecutive iterations, convergence is considered
        # to be reached and training stops.
        tol=0.0)

    conv1 = ConvolutionLayer1(
        ConvGraph1(activation_function=TanhFunction(),
                   filter_num=batch_size,
                   channel=channel,
                   kernel_size=3,
                   scale=scale,
                   stride=1,
                   pad=1))

    conv2 = ConvolutionLayer2(
        ConvGraph2(activation_function=TanhFunction(),
                   filter_num=batch_size,
                   channel=batch_size,
                   kernel_size=3,
                   scale=scale,
                   stride=1,
                   pad=1))

    cnn = SpatioTemporalAutoEncoder(
        layerable_cnn_list=[conv1, conv2],
        encoder=encoder,
        decoder=decoder,
        epochs=epochs,
        batch_size=batch_size,
        learning_rate=1e-05,
        learning_attenuate_rate=0.1,
        attenuate_epoch=25,
        computable_loss=MeanSquaredError(),
        opt_params=Adam(),
        verificatable_result=VerificateFunctionApproximation(),
        test_size_rate=0.3,
        tol=1e-15,
        save_flag=False)

    cnn.learn_generated(feature_generator)

    test_len = 0
    test_limit = 1

    test_arr_list = []
    rec_arr_list = []
    for batch_observed_arr, batch_target_arr, test_batch_observed_arr, test_batch_target_arr in feature_generator.generate(
    ):
        test_len += 1
        result_arr = cnn.inference(test_batch_observed_arr)
        for batch in range(test_batch_target_arr.shape[0]):
            for seq in range(test_batch_target_arr[batch].shape[0]):
                arr = test_batch_target_arr[batch][seq][0]
                arr = (arr - arr.min()) / (arr.max() - arr.min())
                arr *= 255
                img = Image.fromarray(np.uint8(arr))
                img.save("result/" + str(i) + "_" + str(seq) + "_observed.png")
            for seq in range(result_arr[batch].shape[0]):
                arr = result_arr[batch][seq][0]
                arr = (arr - arr.min()) / (arr.max() - arr.min())
                arr *= 255
                img = Image.fromarray(np.uint8(arr))
                img.save("result/" + str(i) + "_" + str(seq) +
                         "_reconsturcted.png")

        if test_len >= test_limit:
            break
Example #23
0
    def __init__(self,
                 batch_size,
                 layerable_cnn_list,
                 cnn_output_graph,
                 learning_rate=1e-05,
                 computable_loss=None,
                 opt_params=None,
                 verificatable_result=None,
                 cnn=None,
                 feature_matching_layer=0):
        '''
        Init.

        Args:
            batch_size:                     Batch size in mini-batch.
            layerable_cnn_list:             `list` of `LayerableCNN`.
            cnn_output_graph:               is-a `CNNOutputGraph`.
            learning_rate:                  Learning rate.
            computable_loss:                is-a `ComputableLoss`.
                                            This parameters will be refered only when `cnn` is `None`.

            opt_params:                     is-a `OptParams`.
                                            This parameters will be refered only when `cnn` is `None`.

            verificatable_result:           is-a `VerificateFunctionApproximation`.
                                            This parameters will be refered only when `cnn` is `None`.

            cnn:                            is-a `ConvolutionalNeuralNetwork` as a model in this class.
                                            If not `None`, `self.__cnn` will be overrided by this `cnn`.
                                            If `None`, this class initialize `ConvolutionalNeuralNetwork`
                                            by default hyper parameters.

            feature_matching_layer:         Key of layer number for feature matching forward/backward.

        '''
        for layerable_cnn in layerable_cnn_list:
            if isinstance(layerable_cnn, LayerableCNN) is False:
                raise TypeError()

        self.__layerable_cnn_list = layerable_cnn_list
        self.__learning_rate = learning_rate
        self.__opt_params = opt_params

        if cnn is None:
            if computable_loss is None:
                computable_loss = MeanSquaredError()
            if isinstance(computable_loss, ComputableLoss) is False:
                raise TypeError()

            if verificatable_result is None:
                verificatable_result = VerificateFunctionApproximation()
            if isinstance(verificatable_result, VerificatableResult) is False:
                raise TypeError()

            if opt_params is None:
                opt_params = Adam()
                opt_params.weight_limit = 1e+10
                opt_params.dropout_rate = 0.0
            if isinstance(opt_params, OptParams) is False:
                raise TypeError()

            cnn = ConvolutionalNeuralNetwork(
                layerable_cnn_list=layerable_cnn_list,
                computable_loss=computable_loss,
                opt_params=opt_params,
                verificatable_result=verificatable_result,
                epochs=100,
                batch_size=batch_size,
                learning_rate=learning_rate,
                learning_attenuate_rate=0.1,
                test_size_rate=0.3,
                tol=1e-15,
                tld=100.0,
                save_flag=False,
                pre_learned_path_list=None)
            cnn.setup_output_layer(cnn_output_graph)

        self.__cnn = cnn
        self.__batch_size = batch_size
        self.__computable_loss = computable_loss
        self.__learning_rate = learning_rate
        self.__q_shape = None
        self.__loss_list = []
        self.__feature_matching_layer = feature_matching_layer
        self.__epoch_counter = 0
        logger = getLogger("pygan")
        self.__logger = logger
Example #24
0
    def __init__(self,
                 batch_size,
                 layerable_cnn_list,
                 lstm_model,
                 seq_len=10,
                 learning_rate=1e-05,
                 computable_loss=None,
                 opt_params=None,
                 verificatable_result=None,
                 pre_learned_path_list=None,
                 verbose_mode=False):
        logger = getLogger("pydbm")
        handler = StreamHandler()
        if verbose_mode is True:
            handler.setLevel(DEBUG)
            logger.setLevel(DEBUG)
        else:
            handler.setLevel(ERROR)
            logger.setLevel(ERROR)

        logger.addHandler(handler)

        self.__logger = getLogger("pyqlearning")
        handler = StreamHandler()
        if verbose_mode is True:
            self.__logger.setLevel(DEBUG)
        else:
            self.__logger.setLevel(ERROR)

        self.__logger.addHandler(handler)

        if isinstance(lstm_model, LSTMModel) is False:
            raise TypeError()

        if computable_loss is None:
            computable_loss = MeanSquaredError()
        if verificatable_result is None:
            verificatable_result = VerificateFunctionApproximation()
        if opt_params is None:
            opt_params = Adam()
            opt_params.weight_limit = 0.5
            opt_params.dropout_rate = 0.0

        cnn = ConvolutionalNeuralNetwork(
            # The `list` of `ConvolutionLayer`.
            layerable_cnn_list=layerable_cnn_list,
            # The number of epochs in mini-batch training.
            epochs=200,
            # The batch size.
            batch_size=batch_size,
            # Learning rate.
            learning_rate=learning_rate,
            # Loss function.
            computable_loss=computable_loss,
            # Optimizer.
            opt_params=opt_params,
            # Verification.
            verificatable_result=verificatable_result,
            # Others.
            learning_attenuate_rate=0.1,
            attenuate_epoch=50)
        self.__cnn = cnn
        self.__lstm_model = lstm_model
        self.__seq_len = seq_len
        self.__batch_size = batch_size
        self.__computable_loss = computable_loss
        self.__learning_rate = learning_rate
        self.__verbose_mode = verbose_mode
        self.__q_shape = None
        self.__q_logs_list = []
Example #25
0
    def __init__(self,
                 batch_size,
                 layerable_cnn_list,
                 cnn_output_graph,
                 learning_rate=1e-05,
                 computable_loss=None,
                 opt_params=None,
                 verificatable_result=None,
                 cnn=None,
                 verbose_mode=False):
        '''
        Init.

        Args:
            batch_size:                     Batch size in mini-batch.
            layerable_cnn_list:             `list` of `LayerableCNN`.
            cnn_output_graph:               is-a `CNNOutputGraph`.
            learning_rate:                  Learning rate.
            computable_loss:                is-a `ComputableLoss`.
                                            This parameters will be refered only when `cnn` is `None`.

            opt_params:                     is-a `OptParams`.
                                            This parameters will be refered only when `cnn` is `None`.

            verificatable_result:           is-a `VerificateFunctionApproximation`.
                                            This parameters will be refered only when `cnn` is `None`.

            cnn:                            is-a `ConvolutionalNeuralNetwork` as a model in this class.
                                            If not `None`, `self.__cnn` will be overrided by this `cnn`.
                                            If `None`, this class initialize `ConvolutionalNeuralNetwork`
                                            by default hyper parameters.

            verbose_mode:                   Verbose mode or not.

        '''
        for layerable_cnn in layerable_cnn_list:
            if isinstance(layerable_cnn, LayerableCNN) is False:
                raise TypeError()

        logger = getLogger("pydbm")
        handler = StreamHandler()
        if verbose_mode is True:
            handler.setLevel(DEBUG)
            logger.setLevel(DEBUG)
        else:
            handler.setLevel(ERROR)
            logger.setLevel(ERROR)

        logger.addHandler(handler)

        self.__layerable_cnn_list = layerable_cnn_list
        self.__learning_rate = learning_rate
        self.__opt_params = opt_params
        self.__logger = logger

        if cnn is None:
            if computable_loss is None:
                computable_loss = MeanSquaredError()
            if isinstance(computable_loss, ComputableLoss) is False:
                raise TypeError()

            if verificatable_result is None:
                verificatable_result = VerificateFunctionApproximation()
            if isinstance(verificatable_result, VerificatableResult) is False:
                raise TypeError()

            if opt_params is None:
                opt_params = Adam()
                opt_params.weight_limit = 0.5
                opt_params.dropout_rate = 0.0
            if isinstance(opt_params, OptParams) is False:
                raise TypeError()

            cnn = ConvolutionalNeuralNetwork(
                layerable_cnn_list=layerable_cnn_list,
                computable_loss=computable_loss,
                opt_params=opt_params,
                verificatable_result=verificatable_result,
                epochs=100,
                batch_size=batch_size,
                learning_rate=learning_rate,
                learning_attenuate_rate=0.1,
                test_size_rate=0.3,
                tol=1e-15,
                tld=100.0,
                save_flag=False,
                pre_learned_path_list=None)
            cnn.setup_output_layer(cnn_output_graph)

        self.__cnn = cnn
        self.__batch_size = batch_size
        self.__computable_loss = computable_loss
        self.__learning_rate = learning_rate
        self.__verbose_mode = verbose_mode
        self.__q_shape = None
        self.__loss_list = []