def _write_dicom_file(np_slice: np.ndarray, header: pydicom.FileDataset, file_path: str): """Replace data in header with 2D numpy array and write to `file_path`. Args: np_slice (np.ndarray): 2D slice to encode in dicom file. header (pydicom.FileDataset): DICOM header. file_path: File path to write to. """ # Deep copy required in case headers are shared. header = copy.deepcopy(header) expected_dimensions = header.Rows, header.Columns assert ( np_slice.shape == expected_dimensions ), "In-plane dimension mismatch - expected shape {}, got {}".format( str(expected_dimensions), str(np_slice.shape)) np_slice_bytes = np_slice.tobytes() bit_depth = int( len(np_slice_bytes) / (np_slice.shape[0] * np_slice.shape[1]) * 8) if bit_depth != header.BitsAllocated: np_slice = _update_np_dtype(np_slice, header.BitsAllocated) np_slice_bytes = np_slice.tobytes() bit_depth = int( len(np_slice_bytes) / (np_slice.shape[0] * np_slice.shape[1]) * 8) assert bit_depth == header.BitsAllocated, "Bit depth mismatch: Expected {:d} got {:d}".format( header.BitsAllocated, bit_depth) header.PixelData = np_slice_bytes header.save_as(file_path)
def __write_dicom_file__(self, np_slice: np.ndarray, header: pydicom.FileDataset, filepath: str): """ Replace data in header with 2D numpy array and write to filepath :param np_slice: a 2D numpy array :param header: a pydicom.FileDataset with fields populated :param filepath: Filepath to write dicom to """ expected_dimensions = header.Rows, header.Columns assert np_slice.shape == expected_dimensions, "In-plane dimension mismatch - expected shape %s, got %s" % ( str(expected_dimensions), str(np_slice.shape)) np_slice_bytes = np_slice.tobytes() bit_depth = int( len(np_slice_bytes) / (np_slice.shape[0] * np_slice.shape[1]) * 8) if bit_depth != header.BitsAllocated: np_slice = __update_np_dtype__(np_slice, header.BitsAllocated) np_slice_bytes = np_slice.tobytes() bit_depth = int( len(np_slice_bytes) / (np_slice.shape[0] * np_slice.shape[1]) * 8) assert bit_depth == header.BitsAllocated, "Bit depth mismatch: Expected %d got %d" % ( header.BitsAllocated, bit_depth) header.PixelData = np_slice_bytes header.save_as(filepath)
def create_dcm_file(self): suffix = '.dcm' filename_little_endian = tempfile.NamedTemporaryFile( suffix=suffix).name filename_big_endian = tempfile.NamedTemporaryFile(suffix=suffix).name print("Setting file meta information...") file_meta = Dataset() file_meta.MediaStorageSOPClassUID = '1.2.840.10008.5.1.4.1.1.2' file_meta.MediaStorageSOPInstanceUID = "1.2.3" file_meta.ImplementationClassUID = "1.2.3.4" print("Setting dataset values...") ds = FileDataset(filename_little_endian, {}, file_meta=file_meta, preamble=b"\0" * 128) ds.PatientName = self.get_patient_name( ) + " " + self.get_patient_surname() ds.PatientID = self.get_patient_id() ds.PatientSex = self.get_patient_sex() ds.PatientAge = self.get_patient_age() ds.PatientWeight = self.get_patient_weight() ds.ImageComment = self.get_patient_comment() ds.PatientBirthDate = self.get_patient_birth() # Set the transfer syntax ds.is_little_endian = True ds.is_implicit_VR = True # Set creation date/time dt = datetime.datetime.now() ds.ContentDate = dt.strftime('%Y%m%d') timeStr = dt.strftime('%H%M%S.%f') # long format with micro seconds ds.ContentTime = timeStr ds.BitsAllocated = 16 ds.Rows = self.image.shape[0] ds.Columns = self.image.shape[1] ds.PixelRepresentation = 0 ds.SamplesPerPixel = 1 ds.PhotometricInterpretation = "MONOCHROME2" image = self.image image *= 255 image = image.astype("uint16") ds.PixelData = Image.fromarray(image).tobytes() print("Writing test file", filename_little_endian) ds.save_as(filename_little_endian) print("File saved.") ds.file_meta.TransferSyntaxUID = pydicom.uid.ExplicitVRBigEndian ds.is_little_endian = False ds.is_implicit_VR = False print("Writing test file as Big Endian Explicit VR", filename_big_endian) ds.save_as(filename_big_endian) return ds
def generate_dicom_scans(dst, num_scans=10, intercept=0, slope=1): spacing = (0.4 + 0.4 * np.random.rand(num_scans, 3) + np.array([1 + 0.5 * np.random.rand(), 0, 0])) origin = np.random.randint(-200, 200, (num_scans, 3)) for i in range(num_scans): num_slices = np.random.randint(128, 169) scan_id = np.random.randint(2**16) scan_data = np.random.randint(0, 256, (num_slices, 128, 128)) folder = os.path.join(dst, hex(scan_id).replace('x', '').upper().zfill(8)) if not os.path.exists(folder): os.makedirs(folder) for k in range(num_slices): slice_name = (hex(scan_id + k).replace('x', '').upper().zfill(8)) filename = os.path.join(folder, slice_name) pixel_array = (scan_data[k, ...] - intercept) / slope locZ = float(origin[i, 0] + spacing[i, 0] * k) locY, locX = float(origin[i, 1]), float(origin[i, 2]) file_meta = DicomDataset() file_meta.MediaStorageSOPClassUID = "Secondary Capture Image Storage" file_meta.MediaStorateSOPInstanceUID = (hex(scan_id).replace( 'x', '').upper().zfill(8)) file_meta.ImplementationClassUID = slice_name dataset = DicomFileDataset(filename, {}, file_meta=file_meta, preamble=b"\0" * 128) dataset.PixelData = pixel_array.astype(np.uint16).tostring() dataset.RescaleSlope = slope dataset.RescaleIntercept = intercept dataset.ImagePositionPatient = MultiValue( type_constructor=float, iterable=[locZ, locY, locX]) dataset.PixelSpacing = MultiValue( type_constructor=float, iterable=[float(spacing[i, 1]), float(spacing[i, 2])]) dataset.SliceThickness = float(spacing[i, 0]) dataset.Modality = 'WSD' dataset.Columns = pixel_array.shape[0] dataset.Rows = pixel_array.shape[1] dataset.file_meta.TransferSyntaxUID = pydicom.uid.ImplicitVRLittleEndian dataset.PixelRepresentation = 1 dataset.BitsAllocated = 16 dataset.BitsStored = 16 dataset.SamplesPerPixel = 1 write_file(filename, dataset)
def dump_dicom(data, folder, spacing=(1, 1, 1), origin=(0, 0, 0), intercept=0, slope=1): """ Dump 3D scan in dicom format. Parameters ---------- data : ndarray 3D numpy array containing ct scan's data. folder : str folder where dicom files will be dumped. spacing : ArrayLike ndarray of shape (3,) that contains spacing along z, y, x axes. origin : ArrayLike ndarray of shape (3,) that contains origin for z, y, x axes. interception : float interception value. Default is 0. slope : float slope value. Default is 1. """ spacing = np.array(spacing).reshape(-1) origin = np.array(origin).reshape(-1) if not os.path.exists(folder): os.makedirs(folder) num_slices = data.shape[0] scan_id = np.random.randint(2 ** 16) for i in range(num_slices): slice_name = ( hex(scan_id + i) .replace('x', '') .upper() .zfill(8) ) filename = os.path.join(folder, slice_name) pixel_array = (data[i, ...] - intercept) / slope locZ, locY, locX = (float(origin[0] + spacing[0] * i), float(origin[1]), float(origin[2])) file_meta = Dataset() file_meta.MediaStorageSOPClassUID = 'Secondary Capture Image Storage' file_meta.MediaStorageSOPInstanceUID = ( hex(scan_id) .replace('x', '') .upper() .zfill(8) ) file_meta.ImplementationClassUID = slice_name dataset = FileDataset(filename, {}, file_meta=file_meta, preamble=b"\0"*128) dataset.PixelData = pixel_array.astype(np.uint16).tostring() dataset.RescaleSlope = slope dataset.RescaleIntercept = intercept dataset.ImagePositionPatient = MultiValue(type_constructor=float, iterable=[locZ, locY, locX]) dataset.PixelSpacing = MultiValue(type_constructor=float, iterable=[float(spacing[1]), float(spacing[2])]) dataset.SliceThickness = float(spacing[0]) dataset.Modality = 'WSD' dataset.Columns = pixel_array.shape[0] dataset.Rows = pixel_array.shape[1] dataset.file_meta.TransferSyntaxUID = pydicom.uid.ImplicitVRLittleEndian dataset.PixelRepresentation = 1 dataset.BitsAllocated = 16 dataset.BitsStored = 16 dataset.SamplesPerPixel = 1 write_file(filename, dataset)
def generate_common_dicom_dataset_series(self, slice_count: int, system: Modality) -> list: output_dataset = [] slice_pos = 0 slice_thickness = 0 study_uid = generate_uid() series_uid = generate_uid() frame_of_ref_uid = generate_uid() date_ = datetime.now().date() age = timedelta(days=45 * 365) time_ = datetime.now().time() cols = 2 rows = 2 bytes_per_voxel = 2 for i in range(0, slice_count): file_meta = Dataset() pixel_array = b"\0" * cols * rows * bytes_per_voxel file_meta.MediaStorageSOPClassUID = sop_classes[system][1] file_meta.MediaStorageSOPInstanceUID = generate_uid() file_meta.ImplementationClassUID = generate_uid() tmp_dataset = FileDataset('', {}, file_meta=file_meta, preamble=pixel_array) tmp_dataset.file_meta.TransferSyntaxUID = "1.2.840.10008.1.2.1" tmp_dataset.SliceLocation = slice_pos + i * slice_thickness tmp_dataset.SliceThickness = slice_thickness tmp_dataset.WindowCenter = 1 tmp_dataset.WindowWidth = 2 tmp_dataset.AcquisitionNumber = 1 tmp_dataset.InstanceNumber = i tmp_dataset.SeriesNumber = 1 tmp_dataset.ImageOrientationPatient = [ 1.000000, 0.000000, 0.000000, 0.000000, 1.000000, 0.000000 ] tmp_dataset.ImagePositionPatient = [ 0.0, 0.0, tmp_dataset.SliceLocation ] tmp_dataset.ImageType = ['ORIGINAL', 'PRIMARY', 'AXIAL'] tmp_dataset.PixelSpacing = [1, 1] tmp_dataset.PatientName = 'John Doe' tmp_dataset.FrameOfReferenceUID = frame_of_ref_uid tmp_dataset.SOPClassUID = sop_classes[system][1] tmp_dataset.SOPInstanceUID = generate_uid() tmp_dataset.SeriesInstanceUID = series_uid tmp_dataset.StudyInstanceUID = study_uid tmp_dataset.BitsAllocated = bytes_per_voxel * 8 tmp_dataset.BitsStored = bytes_per_voxel * 8 tmp_dataset.HighBit = (bytes_per_voxel * 8 - 1) tmp_dataset.PixelRepresentation = 1 tmp_dataset.Columns = cols tmp_dataset.Rows = rows tmp_dataset.SamplesPerPixel = 1 tmp_dataset.AccessionNumber = '2' tmp_dataset.AcquisitionDate = date_ tmp_dataset.AcquisitionTime = datetime.now().time() tmp_dataset.AdditionalPatientHistory = 'UTERINE CA PRE-OP EVAL' tmp_dataset.ContentDate = date_ tmp_dataset.ContentTime = datetime.now().time() tmp_dataset.Manufacturer = 'Mnufacturer' tmp_dataset.ManufacturerModelName = 'Model' tmp_dataset.Modality = sop_classes[system][0] tmp_dataset.PatientAge = '064Y' tmp_dataset.PatientBirthDate = date_ - age tmp_dataset.PatientID = 'ID0001' tmp_dataset.PatientIdentityRemoved = 'YES' tmp_dataset.PatientPosition = 'FFS' tmp_dataset.PatientSex = 'F' tmp_dataset.PhotometricInterpretation = 'MONOCHROME2' tmp_dataset.PixelData = pixel_array tmp_dataset.PositionReferenceIndicator = 'XY' tmp_dataset.ProtocolName = 'some protocole' tmp_dataset.ReferringPhysicianName = '' tmp_dataset.SeriesDate = date_ tmp_dataset.SeriesDescription = 'test series ' tmp_dataset.SeriesTime = time_ tmp_dataset.SoftwareVersions = '01' tmp_dataset.SpecificCharacterSet = 'ISO_IR 100' tmp_dataset.StudyDate = date_ tmp_dataset.StudyDescription = 'test study' tmp_dataset.StudyID = '' if (system == Modality.CT): tmp_dataset.RescaleIntercept = 0 tmp_dataset.RescaleSlope = 1 tmp_dataset.StudyTime = time_ output_dataset.append(tmp_dataset) return output_dataset