def test_size(self, dummy_dmap, size): mydmap = dummy_dmap scatter_kwargs = {'s': size} fig = viz.data_plot(mydmap, 1, scatter_kwargs=scatter_kwargs, show=False) SC = fig.axes[0].collections[0] actual_sizes = SC.get_sizes() assert(np.all(actual_sizes == size))
#test_evals = -4./eps*(mydmap.evals - 1) #eval_error = np.abs(test_evals-real_evals)/real_evals #print(test_evals) #print(eval_error) from pydiffmap.visualization import embedding_plot, data_plot embedding_plot(mydmap, dim=2, scatter_kwargs={ 'c': mydmap.dmap[:, 0], 'cmap': 'Spectral' }) plt.show() data_plot(mydmap, dim=3, scatter_kwargs={'cmap': 'Spectral'}) plt.show() northpole = np.argmax(mydmap.dmap[:, 0]) north = data[northpole, :] phi_n = Phi[northpole] theta_n = Theta[northpole] R = np.array([[ np.sin(theta_n) * np.cos(phi_n), np.sin(theta_n) * np.sin(phi_n), -np.cos(theta_n) ], [-np.sin(phi_n), np.cos(phi_n), 0], [ np.cos(theta_n) * np.cos(phi_n), np.cos(theta_n) * np.sin(phi_n), np.sin(theta_n) ]])
dmap = mydmap.fit_transform(X) from pydiffmap.visualization import embedding_plot embedding_plot(mydmap, scatter_kwargs={ 'c': X[:, 0], 's': 5, 'cmap': 'coolwarm' }) plt.show() from pydiffmap.visualization import data_plot data_plot(mydmap, scatter_kwargs={'s': 5, 'cmap': 'coolwarm'}) plt.show() V = DW beta = 1 target_distribution = np.zeros(len(X)) for i in range(len(X)): target_distribution[i] = np.exp(-beta * V(X[i])) mytdmap = dm.DiffusionMap(alpha=1.0, n_evecs=2, epsilon=.2, k=400) tmdmap = mytdmap.fit_transform(X, weights=target_distribution) embedding_plot(mytdmap, scatter_kwargs={ 'c': X[:, 0], 's': 5, 'cmap': 'coolwarm'
def test_no_kwargs(self, dummy_dmap): mydmap = dummy_dmap fig = viz.data_plot(mydmap, scatter_kwargs=None, show=False) assert (fig)