Example #1
0
def test_linearized_mms_ldg_convergence():
    # LDG Diffusion should converge at 1st order for 1 basis_cpt
    # or at num_basis_cpts - 2 for more basis_cpts
    t = 0.0
    bc = boundary.Periodic()
    p_class = convection_hyper_diffusion.NonlinearHyperDiffusion
    p_func = p_class.linearized_manufactured_solution
    exact_solution = flux_functions.AdvectingSine(offset=2.0)
    for diffusion_function in diffusion_functions:
        problem = p_func(exact_solution, diffusion_function)
        exact_time_derivative = problem.exact_time_derivative(
            exact_solution, t)
        for num_basis_cpts in [1] + list(range(5, 6)):
            for basis_class in basis.BASIS_LIST:
                error_list = []
                basis_ = basis_class(num_basis_cpts)
                # 10 and 20 elems maybe not in asymptotic regime yet
                for num_elems in [20, 40]:
                    mesh_ = mesh.Mesh1DUniform(0.0, 1.0, num_elems)
                    dg_solution = basis_.project(exact_solution, mesh_, t)
                    L = problem.ldg_operator(dg_solution, t, bc, bc)
                    dg_error = math_utils.compute_dg_error(
                        L, exact_time_derivative)
                    error = dg_error.norm()
                    error_list.append(error)
                    # plot.plot_dg_1d(L, function=exact_time_derivative)
                order = utils.convergence_order(error_list)
                # if already at machine precision don't check convergence
                if error_list[-1] > tolerance:
                    if num_basis_cpts == 1:
                        assert order >= 1
                    else:
                        assert order >= num_basis_cpts - 4
def test_ldg_polynomials_convergence():
    # LDG Diffusion should converge at 1st order for 1 basis_cpt
    # or at num_basis_cpts - 4 for more basis_cpts
    bc = boundary.Extrapolation()
    t = 0.0
    for i in range(4, 7):
        hyper_diffusion.initial_condition = x_functions.Polynomial(degree=i)
        exact_solution = hyper_diffusion.exact_time_derivative(
            hyper_diffusion.initial_condition, t)
        for num_basis_cpts in [1] + list(range(5, i + 1)):
            for basis_class in basis.BASIS_LIST:
                error_list = []
                basis_ = basis_class(num_basis_cpts)
                for num_elems in [10, 20]:
                    mesh_ = mesh.Mesh1DUniform(0.0, 1.0, num_elems)
                    dg_solution = basis_.project(
                        hyper_diffusion.initial_condition, mesh_)
                    L = hyper_diffusion.ldg_operator(dg_solution, t, bc, bc,
                                                     bc, bc)
                    dg_error = math_utils.compute_dg_error(L, exact_solution)
                    error = dg_error.norm(slice(2, -2))
                    error_list.append(error)
                    # plot.plot_dg_1d(L, function=exact_solution, elem_slice=slice(1, -1))
                order = utils.convergence_order(error_list)
                # if already at machine precision don't check convergence
                if error_list[-1] > tolerance:
                    if num_basis_cpts == 1:
                        assert order >= 1
                    else:
                        assert order >= num_basis_cpts - 4
Example #3
0
def test_evaluate_weak_form():
    periodic_bc = boundary.Periodic()
    t = 0.0
    for problem in test_problems:
        exact_time_derivative = problem.exact_time_derivative
        initial_time_derivative = x_functions.FrozenT(exact_time_derivative,
                                                      0.0)
        riemann_solver = riemann_solvers.LocalLaxFriedrichs(problem)
        for basis_class in basis.BASIS_LIST:
            for num_basis_cpts in range(1, 4):
                error_list = []
                basis_ = basis_class(num_basis_cpts)
                for num_elems in [20, 40]:
                    mesh_ = mesh.Mesh1DUniform(0.0, 1.0, num_elems)
                    dg_solution = basis_.project(initial_condition, mesh_)
                    result = dg_utils.evaluate_weak_form(
                        dg_solution, t, problem.app_.flux_function,
                        riemann_solver, periodic_bc,
                        problem.app_.nonconservative_function,
                        problem.app_.regularization_path,
                        problem.app_.source_function)

                    error = math_utils.compute_error(result,
                                                     initial_time_derivative)
                    error_list.append(error)
                order = utils.convergence_order(error_list)
                if num_basis_cpts == 1:
                    assert order >= 1
                else:
                    assert order >= num_basis_cpts - 1
Example #4
0
def test_ldg_cos():
    # LDG Diffusion should converge at 1st order for 1 basis_cpt
    # or at num_basis_cpts - 4 for more basis_cpts
    t = 0.0
    bc = boundary.Periodic()
    for nonlinear_hyper_diffusion in [hyper_diffusion_identity]:
        nonlinear_hyper_diffusion.initial_condition = x_functions.Cosine(
            offset=2.0)
        exact_solution = nonlinear_hyper_diffusion.exact_time_derivative(
            nonlinear_hyper_diffusion.initial_condition, t)
        for num_basis_cpts in [1] + list(range(5, 6)):
            for basis_class in basis.BASIS_LIST:
                error_list = []
                basis_ = basis_class(num_basis_cpts)
                for num_elems in [10, 20]:
                    mesh_ = mesh.Mesh1DUniform(0.0, 1.0, num_elems)
                    dg_solution = basis_.project(
                        nonlinear_hyper_diffusion.initial_condition, mesh_)
                    L = nonlinear_hyper_diffusion.ldg_operator(
                        dg_solution, t, bc, bc, bc, bc)
                    dg_error = math_utils.compute_dg_error(L, exact_solution)
                    error = dg_error.norm()
                    error_list.append(error)
                    # plot.plot_dg_1d(L, function=exact_solution)
                order = utils.convergence_order(error_list)
                # if already at machine precision don't check convergence
                if error_list[-1] > tolerance:
                    if num_basis_cpts == 1:
                        assert order >= 1
                    else:
                        assert order >= num_basis_cpts - 4
Example #5
0
def test_imex_linear_diffusion():
    # advection with linear diffusion
    # (q_t + q_x = q_xx + s(x, t))
    exact_solution = xt_functions.AdvectingSine(offset=2.0)
    problem = convection_diffusion.ConvectionDiffusion.manufactured_solution(
        exact_solution)
    t_initial = 0.0
    bc = boundary.Periodic()
    error_dict = dict()
    cfl_list = [0.9, 0.3, 0.1]
    for num_basis_cpts in range(1, 4):
        imex = imex_runge_kutta.get_time_stepper(num_basis_cpts)
        cfl = cfl_list[num_basis_cpts - 1]
        # take 10 timesteps at coarsest time interval
        n = 20
        t_final = cfl * (1.0 / n) / exact_solution.wavespeed
        exact_solution_final = lambda x: exact_solution(x, t_final)
        for basis_class in basis.BASIS_LIST:
            basis_ = basis_class(num_basis_cpts)
            error_list = []
            for num_elems in [n, 2 * n]:
                mesh_ = mesh.Mesh1DUniform(0.0, 1.0, num_elems)
                delta_t = cfl * mesh_.delta_x / exact_solution.wavespeed
                dg_solution = basis_.project(problem.initial_condition, mesh_)

                # weak dg form with flux_function and source term
                explicit_operator = problem.get_explicit_operator(bc)
                # ldg discretization of diffusion_function
                implicit_operator = problem.get_implicit_operator(
                    bc, bc, include_source=False)
                # this is a constant matrix case
                (matrix, vector) = problem.ldg_matrix(dg_solution,
                                                      t_initial,
                                                      bc,
                                                      bc,
                                                      include_source=False)
                solve_operator = time_stepping.get_solve_function_constant_matrix(
                    matrix, vector)

                final_solution = time_stepping.time_step_loop_imex(
                    dg_solution,
                    t_initial,
                    t_final,
                    delta_t,
                    imex,
                    explicit_operator,
                    implicit_operator,
                    solve_operator,
                )

                dg_error = math_utils.compute_dg_error(final_solution,
                                                       exact_solution_final)
                error = dg_error.norm()
                error_list.append(error)
                # plot.plot_dg_1d(final_solution, function=exact_solution_final)
                # plot.plot_dg_1d(dg_error)
            error_dict[num_basis_cpts] = error_list
            order = utils.convergence_order(error_list)
            assert order >= num_basis_cpts
def test_compute_error():
    f = lambda x: np.cos(x)
    for basis_class in basis.BASIS_LIST:
        for num_basis_cpts in range(1, 3):
            errorList = []
            basis_ = basis_class(num_basis_cpts)
            for num_elems in [10, 20]:
                mesh_ = mesh.Mesh1DUniform(0.0, 1.0, num_elems)
                dg_solution = basis_.project(f, mesh_)
                error = math_utils.compute_error(dg_solution, f)
                errorList.append(error)
            order = utils.convergence_order(errorList)
            assert order >= num_basis_cpts
Example #7
0
def test_linearized_mms_ldg_irk():
    # g = functions.Sine(offset=2.0)
    # r = -1.0
    # exact_solution = flux_functions.ExponentialFunction(g, r)
    exact_solution = flux_functions.AdvectingSine(offset=2.0)
    t_initial = 0.0
    t_final = 0.1
    exact_solution_final = lambda x: exact_solution(x, t_final)
    bc = boundary.Periodic()
    p_class = convection_hyper_diffusion.NonlinearHyperDiffusion
    p_func = p_class.linearized_manufactured_solution
    for diffusion_function in diffusion_functions:
        problem = p_func(exact_solution, diffusion_function)
        for num_basis_cpts in range(1, 3):
            irk = implicit_runge_kutta.get_time_stepper(num_basis_cpts)
            for basis_class in basis.BASIS_LIST:
                basis_ = basis_class(num_basis_cpts)
                error_list = []
                for i in [1, 2]:
                    if i == 1:
                        delta_t = 0.01
                        num_elems = 20
                    else:
                        delta_t = 0.005
                        num_elems = 40
                    mesh_ = mesh.Mesh1DUniform(0.0, 1.0, num_elems)
                    dg_solution = basis_.project(problem.initial_condition,
                                                 mesh_)
                    # time_dependent_matrix time does matter
                    matrix_function = lambda t: problem.ldg_matrix(
                        dg_solution, t, bc, bc, bc, bc)
                    rhs_function = problem.get_implicit_operator(
                        bc, bc, bc, bc)
                    solve_function = time_stepping.get_solve_function_matrix(
                        matrix_function)
                    new_solution = time_stepping.time_step_loop_implicit(
                        dg_solution,
                        t_initial,
                        t_final,
                        delta_t,
                        irk,
                        rhs_function,
                        solve_function,
                    )
                    error = math_utils.compute_error(new_solution,
                                                     exact_solution_final)
                    error_list.append(error)
                    # plot.plot_dg_1d(new_solution, function=exact_solution_final)
                order = utils.convergence_order(error_list)
                assert order >= num_basis_cpts
Example #8
0
def test_nonlinear_mms_ldg_irk():
    exact_solution = flux_functions.AdvectingSine(amplitude=0.1, offset=0.15)
    t_initial = 0.0
    t_final = 0.1
    exact_solution_final = lambda x: exact_solution(x, t_final)
    bc = boundary.Periodic()
    p_func = thin_film.ThinFilmDiffusion.manufactured_solution
    problem = p_func(exact_solution)
    for num_basis_cpts in range(1, 3):
        irk = implicit_runge_kutta.get_time_stepper(num_basis_cpts)
        cfl = 0.5
        for basis_class in basis.BASIS_LIST:
            basis_ = basis_class(num_basis_cpts)
            error_list = []
            n = 40
            for num_elems in [n, 2 * n]:
                mesh_ = mesh.Mesh1DUniform(0.0, 1.0, num_elems)
                delta_t = cfl * mesh_.delta_x / exact_solution.wavespeed
                dg_solution = basis_.project(problem.initial_condition, mesh_)
                # time_dependent_matrix time does matter
                matrix_function = lambda t, q: problem.ldg_matrix(q, t, bc, bc, bc, bc)
                rhs_function = problem.get_implicit_operator(bc, bc, bc, bc)
                solve_function = time_stepping.get_solve_function_picard(
                    matrix_function, num_basis_cpts, num_elems * num_basis_cpts
                )
                new_solution = time_stepping.time_step_loop_implicit(
                    dg_solution,
                    t_initial,
                    t_final,
                    delta_t,
                    irk,
                    rhs_function,
                    solve_function,
                )
                error = math_utils.compute_error(new_solution, exact_solution_final)
                error_list.append(error)
                # plot.plot_dg_1d(new_solution, function=exact_solution_final)
            with open("thin_film_nonlinear_irk_test.yml", "a") as file:
                dict_ = dict()
                subdict = dict()
                subdict["cfl"] = cfl
                subdict["n"] = n
                subdict["error0"] = float(error_list[0])
                subdict["error1"] = float(error_list[1])
                subdict["order"] = float(np.log2(error_list[0] / error_list[1]))
                dict_[num_basis_cpts] = subdict
                yaml.dump(dict_, file, default_flow_style=False)
            order = utils.convergence_order(error_list)
            assert order >= num_basis_cpts
def test_ldg_matrix_irk():
    p_func = convection_hyper_diffusion.HyperDiffusion.periodic_exact_solution
    problem = p_func(x_functions.Sine(offset=2.0), diffusion_constant=1.0)
    t_initial = 0.0
    t_final = 0.1
    bc = boundary.Periodic()
    exact_solution = lambda x: problem.exact_solution(x, t_final)
    for num_basis_cpts in range(1, 3):
        irk = implicit_runge_kutta.get_time_stepper(num_basis_cpts)
        for basis_class in basis.BASIS_LIST:
            basis_ = basis_class(num_basis_cpts)
            error_list = []
            # constant matrix
            n = 20
            for num_elems in [n, 2 * n]:
                mesh_ = mesh.Mesh1DUniform(0.0, 1.0, num_elems)
                delta_t = mesh_.delta_x / 5
                dg_solution = basis_.project(problem.initial_condition, mesh_)
                # constant matrix time doesn't matter
                tuple_ = problem.ldg_matrix(dg_solution, t_initial, bc, bc, bc,
                                            bc)
                matrix = tuple_[0]
                vector = tuple_[1]
                rhs_function = problem.get_implicit_operator(bc, bc, bc, bc)
                solve_function = time_stepping.get_solve_function_constant_matrix(
                    matrix, vector)
                new_solution = time_stepping.time_step_loop_implicit(
                    dg_solution,
                    t_initial,
                    t_final,
                    delta_t,
                    irk,
                    rhs_function,
                    solve_function,
                )
                dg_error = math_utils.compute_dg_error(new_solution,
                                                       exact_solution)
                error = dg_error.norm()
                error_list.append(error)
                # plot.plot_dg_1d(new_solution, function=exact_solution)
                # plot.plot(dg_error)
            order = utils.convergence_order(error_list)
            # if not already at machine error
            if error_list[0] > 1e-10 and error_list[1] > 1e-10:
                assert order >= num_basis_cpts
Example #10
0
def test_compute_quadrature_matrix():
    squared = flux_functions.Polynomial(degree=2)
    cubed = flux_functions.Polynomial(degree=3)
    initial_condition = functions.Sine()
    t = 0.0
    x_left = 0.0
    x_right = 1.0
    for f in [squared, cubed]:
        for basis_class in basis.BASIS_LIST:
            for num_basis_cpts in range(1, 6):
                error_list = []
                basis_ = basis_class(num_basis_cpts)
                for num_elems in [10, 20]:
                    mesh_ = mesh.Mesh1DUniform(x_left, x_right, num_elems)
                    dg_solution = basis_.project(initial_condition, mesh_)
                    quadrature_matrix = ldg_utils.compute_quadrature_matrix(
                        dg_solution, t, f)
                    result = solution.DGSolution(None, basis_, mesh_)
                    direct_quadrature = solution.DGSolution(
                        None, basis_, mesh_)
                    for i in range(mesh_.num_elems):
                        # compute value as B_i Q_i
                        result[i] = np.matmul(quadrature_matrix[i],
                                              dg_solution[i])
                        # also compute quadrature directly
                        for l in range(basis_.num_basis_cpts):
                            quadrature_function = (lambda xi: f(
                                initial_condition(
                                    mesh_.transform_to_mesh(xi, i)),
                                xi,
                            ) * initial_condition(
                                mesh_.transform_to_mesh(xi, i)) * basis_.
                                                   derivative(xi, l))
                            direct_quadrature[i, l] = math_utils.quadrature(
                                quadrature_function, -1.0, 1.0)
                        # need to multiply by mass inverse
                        direct_quadrature[i] = np.matmul(
                            basis_.mass_matrix_inverse, direct_quadrature[i])
                    error = (result - direct_quadrature).norm()
                    error_list.append(error)
                if error_list[-1] != 0.0:
                    order = utils.convergence_order(error_list)
                    assert order >= (num_basis_cpts - 1)
Example #11
0
def test_ldg_matrix_irk():
    diffusion = convection_diffusion.Diffusion.periodic_exact_solution()
    t_initial = 0.0
    t_final = 0.1
    bc = boundary.Periodic()
    basis_ = basis.LegendreBasis1D(1)
    exact_solution = lambda x: diffusion.exact_solution(x, t_final)
    for num_basis_cpts in range(1, 3):
        irk = implicit_runge_kutta.get_time_stepper(num_basis_cpts)
        for basis_class in basis.BASIS_LIST:
            basis_ = basis_class(num_basis_cpts)
            error_list = []
            # constant matrix
            for i in [1, 2]:
                if i == 1:
                    delta_t = 0.01
                    num_elems = 20
                else:
                    delta_t = 0.005
                    num_elems = 40
                mesh_ = mesh.Mesh1DUniform(0.0, 1.0, num_elems)
                dg_solution = basis_.project(diffusion.initial_condition,
                                             mesh_)
                # constant matrix time doesn't matter
                tuple_ = diffusion.ldg_matrix(dg_solution, t_initial, bc, bc)
                matrix = tuple_[0]
                # vector = tuple_[1]
                rhs_function = diffusion.get_implicit_operator(bc, bc)
                solve_function = time_stepping.get_solve_function_constant_matrix(
                    matrix)
                new_solution = time_stepping.time_step_loop_implicit(
                    dg_solution,
                    t_initial,
                    t_final,
                    delta_t,
                    irk,
                    rhs_function,
                    solve_function,
                )
                error = math_utils.compute_error(new_solution, exact_solution)
                error_list.append(error)
            order = utils.convergence_order(error_list)
            assert order >= num_basis_cpts
def test_diffusion_ldg_polynomials_convergence():
    # LDG Diffusion should converge at 1st order for 1 basis_cpt
    # or at num_basis_cpts - 2 for more basis_cpts
    bc = boundary.Extrapolation()
    t = 0.0
    for nonlinear_diffusion in test_problems:
        d = nonlinear_diffusion.diffusion_function.degree
        # having problems at i >= d with convergence rate
        # still small error just not converging properly
        # exact solution is grows rapidly as x increases in this situation
        # error must larger at x = 1 then at x = 0
        # could also not be in asymptotic regime
        for i in range(1, d):
            nonlinear_diffusion.initial_condition = x_functions.Polynomial(
                degree=i)
            exact_solution = nonlinear_diffusion.exact_time_derivative(
                nonlinear_diffusion.initial_condition, t)
            for num_basis_cpts in [1] + list(range(3, i + 1)):
                for basis_class in basis.BASIS_LIST:
                    error_list = []
                    basis_ = basis_class(num_basis_cpts)
                    for num_elems in [30, 60]:
                        mesh_ = mesh.Mesh1DUniform(0.0, 1.0, num_elems)
                        dg_solution = basis_.project(
                            nonlinear_diffusion.initial_condition, mesh_)
                        L = nonlinear_diffusion.ldg_operator(
                            dg_solution, t, bc, bc)
                        dg_error = math_utils.compute_dg_error(
                            L, exact_solution)
                        error = dg_error.norm(slice(1, -1))
                        error_list.append(error)
                        # plot.plot_dg_1d(
                        #     L, function=exact_solution, elem_slice=slice(1, -1)
                        # )
                    order = utils.convergence_order(error_list)
                    # if already at machine precision don't check convergence
                    if error_list[-1] > tolerance:
                        if num_basis_cpts == 1:
                            assert order >= 1
                        else:
                            assert order >= num_basis_cpts - 2
Example #13
0
def test_advection_one_time_step():
    def initial_condition(x):
        return np.sin(2.0 * np.pi * x)

    advection_ = advection.Advection(initial_condition=initial_condition)
    riemann_solver = riemann_solvers.LocalLaxFriedrichs(
        advection_.flux_function, advection_.wavespeed_function
    )
    explicit_time_stepper = explicit_runge_kutta.ForwardEuler()
    boundary_condition = boundary.Periodic()
    cfl = 1.0
    for basis_class in basis.BASIS_LIST:
        basis_ = basis_class(1)
        error_list = []
        for num_elems in [20, 40]:
            mesh_ = mesh.Mesh1DUniform(0.0, 1.0, num_elems)
            dg_solution = basis_.project(advection_.initial_condition, mesh_)

            delta_t = dg_utils.get_delta_t(cfl, advection_.wavespeed, mesh_.delta_x)
            time_initial = 0.0
            time_final = delta_t

            rhs_function = lambda time, q: dg_utils.dg_weak_formulation(
                q, advection_.flux_function, riemann_solver, boundary_condition
            )
            final_solution = time_stepping.time_step_loop_explicit(
                dg_solution,
                time_initial,
                time_final,
                delta_t,
                explicit_time_stepper,
                rhs_function,
            )
            error = math_utils.compute_error(
                final_solution, lambda x: advection_.exact_solution(x, time_final)
            )
            error_list.append(error)
        order = utils.convergence_order(error_list)
        assert order >= 1
Example #14
0
def test_advection_operator():
    # test that dg_operator acting on projected initial condition converges to
    # exact time derivative
    # will lose one order of accuracy

    for i in range(2):
        if i == 0:
            sin = x_functions.Sine()
            cos = x_functions.Cosine()
            initial_condition = x_functions.ComposedVector([sin, cos])
        else:
            initial_condition = x_functions.Sine()
        wavespeed = 1.0
        exact_solution = advection.ExactSolution(initial_condition, wavespeed)
        exact_time_derivative = advection.ExactTimeDerivative(exact_solution, wavespeed)
        initial_time_derivative = x_functions.FrozenT(exact_time_derivative, 0.0)

        app_ = advection.Advection(wavespeed)
        riemann_solver = riemann_solvers.LocalLaxFriedrichs(app_.flux_function)
        boundary_condition = boundary.Periodic()

        for basis_class in basis.BASIS_LIST:
            for num_basis_cpts in range(1, 5):
                basis_ = basis_class(num_basis_cpts)
                error_list = []
                for num_elems in [20, 40]:
                    mesh_ = mesh.Mesh1DUniform(0.0, 1.0, num_elems)
                    dg_sol = basis_.project(initial_condition, mesh_)
                    dg_operator = app_.get_explicit_operator(
                        riemann_solver, boundary_condition
                    )
                    F = dg_operator(0.0, dg_sol)
                    error = math_utils.compute_error(F, initial_time_derivative)
                    error_list.append(error)

                order = utils.convergence_order(error_list)
                assert order >= max([1.0, num_basis_cpts - 1])
Example #15
0
def test_ldg_polynomials_convergence():
    # LDG Diffusion should converge at 1st order for 1 basis_cpt
    # or at num_basis_cpts - 4 for more basis_cpts
    bc = boundary.Extrapolation()
    t = 0.0
    # having problems at i >= 3 with convergence rate
    # still small error just not converging properly
    for i in range(3, 5):
        thin_film_diffusion.initial_condition = x_functions.Polynomial(degree=i)
        thin_film_diffusion.initial_condition.set_coeff((1.0 / i), i)
        exact_solution = thin_film_diffusion.exact_time_derivative(
            thin_film_diffusion.initial_condition, t
        )
        for num_basis_cpts in [1] + list(range(5, 6)):
            for basis_class in basis.BASIS_LIST:
                error_list = []
                basis_ = basis_class(num_basis_cpts)
                for num_elems in [40, 80]:
                    mesh_ = mesh.Mesh1DUniform(0.0, 1.0, num_elems)
                    dg_solution = basis_.project(
                        thin_film_diffusion.initial_condition, mesh_
                    )
                    L = thin_film_diffusion.ldg_operator(dg_solution, t, bc, bc, bc, bc)
                    dg_error = math_utils.compute_dg_error(L, exact_solution)
                    error = dg_error.norm(slice(2, -2))
                    error_list.append(error)
                    # plot.plot_dg_1d(
                    #     L, function=exact_solution, elem_slice=slice(1, -1)
                    # )
                order = utils.convergence_order(error_list)
                # if already at machine precision don't check convergence
                if error_list[-1] > tolerance and error_list[0] > tolerance:
                    if num_basis_cpts == 1:
                        assert order >= 1
                    else:
                        assert order >= num_basis_cpts - 4
Example #16
0
def test_dg_operator():
    # test that dg_operator converges to exact_time_derivative in smooth case
    initial_condition = x_functions.Sine(offset=2.0)
    max_wavespeed = 3.0
    problem = smooth_example.SmoothExample(initial_condition, max_wavespeed)

    riemann_solver = riemann_solvers.LocalLaxFriedrichs(problem)
    boundary_condition = boundary.Periodic()

    x_left = 0.0
    x_right = 1.0

    exact_time_derivative = burgers.ExactTimeDerivative(
        problem.initial_condition)
    exact_time_derivative_initial = x_functions.FrozenT(
        exact_time_derivative, 0.0)

    for basis_class in basis.BASIS_LIST:
        for num_basis_cpts in range(1, 5):
            basis_ = basis_class(num_basis_cpts)
            error_list = []
            for num_elems in [40, 80]:
                mesh_ = mesh.Mesh1DUniform(x_left, x_right, num_elems)
                dg_solution = basis_.project(problem.initial_condition, mesh_)
                explicit_operator = problem.app_.get_explicit_operator(
                    riemann_solver, boundary_condition)

                dg_time_derivative = explicit_operator(0.0, dg_solution)
                error = math_utils.compute_error(
                    dg_time_derivative, exact_time_derivative_initial)
                error_list.append(error)
            order = test_utils.convergence_order(error_list)
            if num_basis_cpts > 1:
                assert order >= num_basis_cpts - 1
            else:
                assert order >= 1
Example #17
0
def test_imex_nonlinear_mms():
    wavenumber = 1.0 / 20.0
    x_left = 0.0
    x_right = 40.0
    exact_solution = flux_functions.AdvectingSine(
        amplitude=0.1, wavenumber=wavenumber, offset=0.15
    )
    p_func = thin_film.ThinFilm.manufactured_solution
    t_initial = 0.0
    bc = boundary.Periodic()
    problem = p_func(exact_solution)
    cfl_list = [0.5, 0.1, 0.1]
    n = 40
    for num_basis_cpts in range(3, 4):
        imex = imex_runge_kutta.get_time_stepper(num_basis_cpts)
        cfl = cfl_list[num_basis_cpts - 1]
        t_final = 10 * cfl * ((x_right - x_left) / n) / exact_solution.wavespeed
        exact_solution_final = lambda x: exact_solution(x, t_final)
        for basis_class in [basis.LegendreBasis1D]:
            basis_ = basis_class(num_basis_cpts)
            error_list = []
            for num_elems in [n, 2 * n]:
                mesh_ = mesh.Mesh1DUniform(x_left, x_right, num_elems)
                delta_t = cfl * mesh_.delta_x / exact_solution.wavespeed
                dg_solution = basis_.project(problem.initial_condition, mesh_)

                # weak dg form with flux_function and source term
                explicit_operator = problem.get_explicit_operator(bc)
                # ldg discretization of diffusion_function
                implicit_operator = problem.get_implicit_operator(
                    bc, bc, bc, bc, include_source=False
                )
                matrix_function = lambda t, q: problem.ldg_matrix(
                    q, t, bc, bc, bc, bc, include_source=False
                )

                solve_operator = time_stepping.get_solve_function_picard(
                    matrix_function, num_basis_cpts, num_elems * num_basis_cpts
                )

                final_solution = time_stepping.time_step_loop_imex(
                    dg_solution,
                    t_initial,
                    t_final,
                    delta_t,
                    imex,
                    explicit_operator,
                    implicit_operator,
                    solve_operator,
                )

                error = math_utils.compute_error(final_solution, exact_solution_final)
                error_list.append(error)
                # plot.plot_dg_1d(final_solution, function=exact_solution_final)
            with open("thin_film_nonlinear_mms_test.yml", "a") as file:
                dict_ = dict()
                subdict = dict()
                subdict["cfl"] = cfl
                subdict["n"] = n
                subdict["error0"] = float(error_list[0])
                subdict["error1"] = float(error_list[1])
                subdict["order"] = float(np.log2(error_list[0] / error_list[1]))
                dict_[num_basis_cpts] = subdict
                yaml.dump(dict_, file, default_flow_style=False)
            order = utils.convergence_order(error_list)
            assert order >= num_basis_cpts
def test_imex_linearized_mms():
    # advection with linearized diffusion
    # (q_t + q_x = (f(x, t) q_xx + s(x, t))
    exact_solution = flux_functions.AdvectingSine(amplitude=0.1, offset=0.15)
    p_class = convection_hyper_diffusion.ConvectionHyperDiffusion
    p_func = p_class.linearized_manufactured_solution
    t_initial = 0.0
    bc = boundary.Periodic()
    for diffusion_function in [squared]:
        problem = p_func(exact_solution, None, diffusion_function)
        cfl_list = [0.9, 0.15, 0.1]
        for num_basis_cpts in range(2, 4):
            imex = imex_runge_kutta.get_time_stepper(num_basis_cpts)
            cfl = cfl_list[num_basis_cpts - 1]
            n = 20
            t_final = cfl * (1.0 / n) / exact_solution.wavespeed
            exact_solution_final = lambda x: exact_solution(x, t_final)
            for basis_class in [basis.LegendreBasis1D]:
                basis_ = basis_class(num_basis_cpts)
                error_list = []
                for num_elems in [n, 2 * n]:
                    mesh_ = mesh.Mesh1DUniform(0.0, 1.0, num_elems)
                    delta_t = cfl * mesh_.delta_x / exact_solution.wavespeed
                    dg_solution = basis_.project(problem.initial_condition,
                                                 mesh_)

                    # weak dg form with flux_function and source term
                    explicit_operator = problem.get_explicit_operator(bc)
                    # ldg discretization of diffusion_function
                    implicit_operator = problem.get_implicit_operator(
                        bc, bc, bc, bc, include_source=False)
                    # this is a constant matrix case
                    matrix_function = lambda t: problem.ldg_matrix(
                        dg_solution, t, bc, bc, bc, bc, include_source=False)

                    solve_operator = time_stepping.get_solve_function_matrix(
                        matrix_function)

                    final_solution = time_stepping.time_step_loop_imex(
                        dg_solution,
                        t_initial,
                        t_final,
                        delta_t,
                        imex,
                        explicit_operator,
                        implicit_operator,
                        solve_operator,
                    )

                    error = math_utils.compute_error(final_solution,
                                                     exact_solution_final)
                    error_list.append(error)
                    # plot.plot_dg_1d(final_solution, function=exact_solution_final)
                order = utils.convergence_order(error_list)
                with open("hyper_diffusion_linearized_mms_test.yml",
                          "a") as file:
                    dict_ = dict()
                    subdict = dict()
                    subdict["cfl"] = cfl
                    subdict["n"] = n
                    subdict["error0"] = float(error_list[0])
                    subdict["error1"] = float(error_list[1])
                    subdict["order"] = float(
                        np.log2(error_list[0] / error_list[1]))
                    dict_[num_basis_cpts] = subdict
                    yaml.dump(dict_, file, default_flow_style=False)
                assert order >= num_basis_cpts