def group_options(options, timepoint):
        options = copy.deepcopy(options)

        if options.mbm.lsq6.target_type == TargetType.pride_of_models:
            options = copy.deepcopy(options)
            targets = get_closest_model_from_pride_of_models(pride_of_models_dict=get_pride_of_models_mapping(
                                                                 pride_csv=options.mbm.lsq6.target_file,
                                                                 output_dir=options.application.output_directory,
                                                                 pipeline_name=options.application.pipeline_name),
                                                             time_point=timepoint)

            options.mbm.lsq6 = options.mbm.lsq6.replace(target_type=TargetType.initial_model,
                                                        target_file=targets.registration_standard.path)

        #    resolution = (options.registration.resolution
        #                  or get_resolution_from_file(targets.registration_standard.path))
        #    options.registration = options.registration.replace(resolution=resolution)

                                                        # FIXME use of registration_standard here is quite wrong ...
                                                        # part of the trouble is that mbm calls registration_targets itself,
                                                        # so we can't send this RegistrationTargets to `mbm` directly ...
                                                        # one option: add yet another optional arg to `mbm` ...
        else:
            targets = s.defer(registration_targets(lsq6_conf=options.mbm.lsq6,
                                           app_conf=options.application, reg_conf=options.registration,
                                           first_input_file=imgs.filename.iloc[0]))

        resolution = (options.registration.resolution or
                        get_resolution_from_file(targets.registration_standard.path))

        # This must happen after calling registration_targets otherwise it will resample to options.registration.resolution
        options.registration = options.registration.replace(resolution=resolution)

        return options
    def group_options(options, timepoint):
        options = copy.deepcopy(options)

        if options.mbm.lsq6.target_type == TargetType.pride_of_models:
            options = copy.deepcopy(options)
            targets = get_closest_model_from_pride_of_models(pride_of_models_dict=get_pride_of_models_mapping(
                                                                 pride_csv=options.mbm.lsq6.target_file,
                                                                 output_dir=options.application.output_directory,
                                                                 pipeline_name=options.application.pipeline_name),
                                                             time_point=timepoint)

            options.mbm.lsq6 = options.mbm.lsq6.replace(target_type=TargetType.initial_model,
                                                        target_file=targets.registration_standard.path)

        #    resolution = (options.registration.resolution
        #                  or get_resolution_from_file(targets.registration_standard.path))
        #    options.registration = options.registration.replace(resolution=resolution)

                                                        # FIXME use of registration_standard here is quite wrong ...
                                                        # part of the trouble is that mbm calls registration_targets itself,
                                                        # so we can't send this RegistrationTargets to `mbm` directly ...
                                                        # one option: add yet another optional arg to `mbm` ...
        else:
            targets = s.defer(registration_targets(lsq6_conf=options.mbm.lsq6,
                                           app_conf=options.application, reg_conf=options.registration,
                                           first_input_file=imgs.filename.iloc[0]))

        resolution = (options.registration.resolution or
                        get_resolution_from_file(targets.registration_standard.path))

        # This must happen after calling registration_targets otherwise it will resample to options.registration.resolution
        options.registration = options.registration.replace(resolution=resolution)

        return options
def two_level(grouped_files_df, options: TwoLevelConf):
    """
    grouped_files_df - must contain 'group':<any comparable, sortable type> and 'file':MincAtom columns
    """  # TODO weird naming since the grouped_files_df isn't a GroupBy object?  just files_df?
    s = Stages()

    if grouped_files_df.isnull().values.any():
        raise ValueError("NaN values in input dataframe; can't go")

    if options.mbm.lsq6.target_type == TargetType.bootstrap:
        # won't work since the second level part tries to get the resolution of *its* "first input file", which
        # hasn't been created.  We could instead pass in a resolution to the `mbm` function,
        # but instead disable for now:
        raise ValueError(
            "Bootstrap model building currently doesn't work with this pipeline; "
            "just specify an initial target instead")
    elif options.mbm.lsq6.target_type == TargetType.pride_of_models:
        pride_of_models_mapping = get_pride_of_models_mapping(
            pride_csv=options.mbm.lsq6.target_file,
            output_dir=options.application.output_directory,
            pipeline_name=options.application.pipeline_name)

    # FIXME this is the same as in the 'tamarack' except for names of arguments/enclosing variables
    def group_options(options, group):
        options = copy.deepcopy(options)

        if options.mbm.lsq6.target_type == TargetType.pride_of_models:

            targets = get_closest_model_from_pride_of_models(
                pride_of_models_dict=pride_of_models_mapping, time_point=group)

            options.mbm.lsq6 = options.mbm.lsq6.replace(
                target_type=TargetType.initial_model,
                target_file=targets.registration_standard.path)
        else:
            # this will ensure that all groups have the same resolution -- is it necessary?
            targets = s.defer(
                registration_targets(
                    lsq6_conf=options.mbm.lsq6,
                    app_conf=options.application,
                    reg_conf=options.registration,
                    first_input_file=grouped_files_df.file.iloc[0]))

        resolution = (options.registration.resolution
                      or get_resolution_from_file(
                          targets.registration_standard.path))
        # This must happen after calling registration_targets otherwise it will resample to options.registration.resolution
        options.registration = options.registration.replace(
            resolution=resolution)
        # no need to check common space settings here since they're turned off at the parser level
        # (a bit strange)
        return options

    first_level_results = (
        grouped_files_df.groupby(
            'group', as_index=False
        )  # the usual annoying pattern to do a aggregate with access
        .aggregate({'file': lambda files: list(files)
                    })  # to the groupby object's keys ... TODO: fix
        .rename(columns={
            'file': "files"
        }).assign(build_model=lambda df: df.apply(
            axis=1,
            func=lambda row: s.defer(
                mbm(imgs=row.files,
                    options=group_options(options, row.group),
                    prefix="%s" % row.group,
                    output_dir=os.path.join(
                        options.application.output_directory, options.
                        application.pipeline_name + "_first_level",
                        "%s_processed" % row.group))))))

    # TODO replace .assign(...apply(...)...) with just an apply, producing a series right away?

    # FIXME right now the same options set is being used for both levels -- use options.first/second_level
    second_level_options = copy.deepcopy(options)
    second_level_options.mbm.lsq6 = second_level_options.mbm.lsq6.replace(
        run_lsq6=False)
    second_level_options.mbm.segmentation.run_maget = False
    second_level_options.mbm.maget.maget.mask_only = False
    second_level_options.mbm.maget.maget.mask = False

    # FIXME this is probably a hack -- instead add a --second-level-init-model option to specify which timepoint should be used
    # as the initial model in the second level ???  (at this point it doesn't matter due to lack of lsq6 ...)
    if second_level_options.mbm.lsq6.target_type == TargetType.pride_of_models:
        second_level_options.mbm.lsq6 = second_level_options.mbm.lsq6.replace(
            target_type=TargetType.
            target,  # target doesn't really matter as no lsq6 here, just used for resolution...
            target_file=list(pride_of_models_mapping.values())
            [0].registration_standard.path)

    # NOTE: running lsq6_nuc_inorm here doesn't work in general (but possibly with rotational minctracc)
    # since the native-space initial model is used, but our images are
    # already in standard space (as we resampled there after the 1st-level lsq6).
    # On the other hand, we might want to run it here (although of course NOT nuc/inorm!) in the future,
    # for instance given a 'pride' of models (one for each group).

    second_level_results = s.defer(
        mbm(imgs=first_level_results.build_model.map(lambda m: m.avg_img),
            options=second_level_options,
            prefix=os.path.join(
                options.application.output_directory,
                options.application.pipeline_name + "_second_level")))

    # FIXME sadly, `mbm` doesn't return a pd.Series of xfms, so we don't have convenient indexing ...
    overall_xfms = [
        s.defer(concat_xfmhandlers([xfm_1, xfm_2])) for xfms_1, xfm_2 in
        zip([r.xfms.lsq12_nlin_xfm for r in first_level_results.build_model],
            second_level_results.xfms.overall_xfm) for xfm_1 in xfms_1
    ]
    resample = np.vectorize(mincresample_new, excluded={"extra_flags"})
    defer = np.vectorize(s.defer)

    # TODO using the avg_img here is a bit clunky -- maybe better to propagate group indices ...
    # only necessary since `mbm` doesn't return DataFrames but namespaces ...

    first_level_determinants = pd.concat(list(
        first_level_results.build_model.apply(
            lambda x: x.determinants.assign(first_level_avg=x.avg_img))),
                                         ignore_index=True)

    # first_level_xfms is only necessary because you otherwise have no access to the input file which is necessary
    # for merging with the input csv. lsq12_nlin_xfm can be used to merge, and rigid_xfm contains the input file.
    # If for some reason we want to output xfms in the future, just don't drop everything.
    first_level_xfms = pd.concat(
        list(
            first_level_results.build_model.apply(
                lambda x: x.xfms.assign(first_level_avg=x.avg_img))),
        ignore_index=True)[["lsq12_nlin_xfm", "rigid_xfm"]]
    if options.mbm.segmentation.run_maget:
        maget_df = pd.DataFrame([
            {
                "label_file": x.labels.path,
                "native_file": x.orig_path
            }  #, "_merge" : basename(x.orig_path)}
            for x in pd.concat([
                namespace.maget_result
                for namespace in first_level_results.build_model
            ])
        ])
        first_level_xfms = pd.merge(
            left=first_level_xfms.assign(native_file=lambda df: df.rigid_xfm.
                                         apply(lambda x: x.source.path)),
            right=maget_df,
            on="native_file")
    first_level_determinants = (pd.merge(left=first_level_determinants,
                                         right=first_level_xfms,
                                         left_on="inv_xfm",
                                         right_on="lsq12_nlin_xfm").drop(
                                             ["rigid_xfm", "lsq12_nlin_xfm"],
                                             axis=1))

    resampled_determinants = (pd.merge(
        left=first_level_determinants,
        right=pd.DataFrame({
            'group_xfm': second_level_results.xfms.overall_xfm
        }).assign(source=lambda df: df.group_xfm.apply(lambda r: r.source)),
        left_on="first_level_avg",
        right_on="source").assign(
            resampled_log_full_det=lambda df: defer(
                resample(img=df.log_full_det,
                         xfm=df.group_xfm.apply(lambda x: x.xfm),
                         like=second_level_results.avg_img)),
            resampled_log_nlin_det=lambda df: defer(
                resample(img=df.log_nlin_det,
                         xfm=df.group_xfm.apply(lambda x: x.xfm),
                         like=second_level_results.avg_img))))
    # TODO only resamples the log determinants, but still a bit ugly ... abstract somehow?
    # TODO shouldn't be called resampled_determinants since this is basically the whole (first_level) thing ...

    inverted_overall_xfms = [
        s.defer(invert_xfmhandler(xfm)) for xfm in overall_xfms
    ]

    overall_determinants = (s.defer(
        determinants_at_fwhms(
            xfms=inverted_overall_xfms,
            inv_xfms=overall_xfms,
            blur_fwhms=options.mbm.stats.stats_kernels)).assign(
                overall_log_full_det=lambda df: df.log_full_det,
                overall_log_nlin_det=lambda df: df.log_nlin_det).drop(
                    ['log_full_det', 'log_nlin_det'], axis=1))

    # TODO return some MAGeT stuff from two_level function ??
    # FIXME running MAGeT from within the `two_level` function has the same problem as running it from within `mbm`:
    # it will now run when this pipeline is called from within another one (e.g., n-level), which will be
    # redundant, create filename clashes, etc. -- this should be moved to `two_level_pipeline`.
    # TODO do we need a `pride of atlases` for MAGeT in this pipeline ??
    # TODO at the moment MAGeT is run within the MBM code, but it could be disabled there and run here
    #if options.mbm.segmentation.run_maget:
    #    maget_options = copy.deepcopy(options)
    #    maget_options.maget = options.mbm.maget
    #    fixup_maget_options(maget_options=maget_options.maget,
    #                        lsq12_options=maget_options.mbm.lsq12,
    #                        nlin_options=maget_options.mbm.nlin)
    #    maget_options.maget.maget.mask = maget_options.maget.maget.mask_only = False   # already done above
    #    del maget_options.mbm

    # again using a weird combination of vectorized and loop constructs ...
    #    s.defer(maget([xfm.resampled for _ix, m in first_level_results.iterrows()
    #                   for xfm in m.build_model.xfms.rigid_xfm],
    #                  options=maget_options,
    #                  prefix="%s_MAGeT" % options.application.pipeline_name,
    #                  output_dir=os.path.join(options.application.output_directory,
    #                                          options.application.pipeline_name + "_processed")))

    # TODO resampling to database model ...

    # TODO there should be one table containing all determinants (first level, overall, resampled first level) for each file
    # and another containing some groupwise information (averages and transforms to the common average)
    return Result(stages=s,
                  output=Namespace(
                      first_level_results=first_level_results,
                      resampled_determinants=resampled_determinants,
                      overall_determinants=overall_determinants))
def two_level(grouped_files_df, options : TwoLevelConf):
    """
    grouped_files_df - must contain 'group':<any comparable, sortable type> and 'file':MincAtom columns
    """  # TODO weird naming since the grouped_files_df isn't a GroupBy object?  just files_df?
    s = Stages()

    if grouped_files_df.isnull().values.any():
        raise ValueError("NaN values in input dataframe; can't go")

    if options.mbm.lsq6.target_type == TargetType.bootstrap:
        # won't work since the second level part tries to get the resolution of *its* "first input file", which
        # hasn't been created.  We could instead pass in a resolution to the `mbm` function,
        # but instead disable for now:
        raise ValueError("Bootstrap model building currently doesn't work with this pipeline; "
                         "just specify an initial target instead")
    elif options.mbm.lsq6.target_type == TargetType.pride_of_models:
        pride_of_models_mapping = get_pride_of_models_mapping(pride_csv=options.mbm.lsq6.target_file,
                                                              output_dir=options.application.output_directory,
                                                              pipeline_name=options.application.pipeline_name)

    # FIXME this is the same as in the 'tamarack' except for names of arguments/enclosing variables
    def group_options(options, group):
        options = copy.deepcopy(options)

        if options.mbm.lsq6.target_type == TargetType.pride_of_models:

            targets = get_closest_model_from_pride_of_models(pride_of_models_dict=pride_of_models_mapping,
                                                             time_point=group)

            options.mbm.lsq6 = options.mbm.lsq6.replace(target_type=TargetType.initial_model,
                                                        target_file=targets.registration_standard.path)
        else:
            # this will ensure that all groups have the same resolution -- is it necessary?
            targets = registration_targets(lsq6_conf=options.mbm.lsq6,
                                           app_conf=options.application,
                                           first_input_file=grouped_files_df.file.iloc[0])

        resolution = (options.registration.resolution
                        or get_resolution_from_file(targets.registration_standard.path))
        options.registration = options.registration.replace(resolution=resolution)
        # no need to check common space settings here since they're turned off at the parser level
        # (a bit strange)
        return options

    first_level_results = (
        grouped_files_df
        .groupby('group', as_index=False, sort=False)       # the usual annoying pattern to do a aggregate with access
        .aggregate({ 'file' : lambda files: list(files) })  # to the groupby object's keys ... TODO: fix
        .rename(columns={ 'file' : "files" })
        .assign(build_model=lambda df:
                              df.apply(axis=1,
                                       func=lambda row:
                                              s.defer(mbm(imgs=row.files,
                                                          options=group_options(options, row.group),
                                                          prefix="%s" % row.group,
                                                          output_dir=os.path.join(
                                                              options.application.output_directory,
                                                              options.application.pipeline_name + "_first_level",
                                                              "%s_processed" % row.group)))))
        )
    # TODO replace .assign(...apply(...)...) with just an apply, producing a series right away?

    # FIXME right now the same options set is being used for both levels -- use options.first/second_level
    second_level_options = copy.deepcopy(options)
    second_level_options.mbm.lsq6 = second_level_options.mbm.lsq6.replace(run_lsq6=False)
    second_level_options.mbm.segmentation.run_maget = False
    second_level_options.mbm.maget.maget.mask_only = False
    second_level_options.mbm.maget.maget.mask = False

    # FIXME this is probably a hack -- instead add a --second-level-init-model option to specify which timepoint should be used
    # as the initial model in the second level ???  (at this point it doesn't matter due to lack of lsq6 ...)
    if second_level_options.mbm.lsq6.target_type == TargetType.pride_of_models:
        second_level_options.mbm.lsq6 = second_level_options.mbm.lsq6.replace(
            target_type=TargetType.target,  # target doesn't really matter as no lsq6 here, just used for resolution...
            target_file=list(pride_of_models_mapping.values())[0].registration_standard.path)

    # NOTE: running lsq6_nuc_inorm here doesn't work in general (but possibly with rotational minctracc)
    # since the native-space initial model is used, but our images are
    # already in standard space (as we resampled there after the 1st-level lsq6).
    # On the other hand, we might want to run it here (although of course NOT nuc/inorm!) in the future,
    # for instance given a 'pride' of models (one for each group).

    second_level_results = s.defer(mbm(imgs=first_level_results.build_model.map(lambda m: m.avg_img),
                                       options=second_level_options,
                                       prefix=os.path.join(options.application.output_directory,
                                                           options.application.pipeline_name + "_second_level")))

    # FIXME sadly, `mbm` doesn't return a pd.Series of xfms, so we don't have convenient indexing ...
    overall_xfms = [s.defer(concat_xfmhandlers([xfm_1, xfm_2]))
                    for xfms_1, xfm_2 in zip([r.xfms.lsq12_nlin_xfm for r in first_level_results.build_model],
                                             second_level_results.xfms.overall_xfm)
                    for xfm_1 in xfms_1]
    resample  = np.vectorize(mincresample_new, excluded={"extra_flags"})
    defer     = np.vectorize(s.defer)

    # TODO using the avg_img here is a bit clunky -- maybe better to propagate group indices ...
    # only necessary since `mbm` doesn't return DataFrames but namespaces ...
    first_level_determinants = pd.concat(list(first_level_results.build_model.apply(
                                                lambda x: x.determinants.assign(first_level_avg=x.avg_img))),
                                         ignore_index=True)

    resampled_determinants = (pd.merge(
        left=first_level_determinants,
        right=pd.DataFrame({'group_xfm' : second_level_results.xfms.overall_xfm})
              .assign(source=lambda df: df.group_xfm.apply(lambda r: r.source)),
        left_on="first_level_avg",
        right_on="source")
        .assign(resampled_log_full_det=lambda df: defer(resample(img=df.log_full_det,
                                                                 xfm=df.group_xfm.apply(lambda x: x.xfm),
                                                                 like=second_level_results.avg_img)),
                resampled_log_nlin_det=lambda df: defer(resample(img=df.log_nlin_det,
                                                                 xfm=df.group_xfm.apply(lambda x: x.xfm),
                                                                 like=second_level_results.avg_img))))
    # TODO only resamples the log determinants, but still a bit ugly ... abstract somehow?
    # TODO shouldn't be called resampled_determinants since this is basically the whole (first_level) thing ...

    inverted_overall_xfms = [s.defer(invert_xfmhandler(xfm)) for xfm in overall_xfms]

    overall_determinants = (s.defer(determinants_at_fwhms(
                                     xfms=inverted_overall_xfms,
                                     inv_xfms=overall_xfms,
                                     blur_fwhms=options.mbm.stats.stats_kernels))
                            .assign(overall_log_full_det=lambda df: df.log_full_det,
                                    overall_log_nlin_det=lambda df: df.log_nlin_det)
                            .drop(['log_full_det', 'log_nlin_det'], axis=1))

    # TODO return some MAGeT stuff from two_level function ??
    # FIXME running MAGeT from within the `two_level` function has the same problem as running it from within `mbm`:
    # it will now run when this pipeline is called from within another one (e.g., n-level), which will be
    # redundant, create filename clashes, etc. -- this should be moved to `two_level_pipeline`.
    # TODO do we need a `pride of atlases` for MAGeT in this pipeline ??
    # TODO at the moment MAGeT is run within the MBM code, but it could be disabled there and run here
    #if options.mbm.segmentation.run_maget:
    #    maget_options = copy.deepcopy(options)
    #    maget_options.maget = options.mbm.maget
    #    fixup_maget_options(maget_options=maget_options.maget,
    #                        lsq12_options=maget_options.mbm.lsq12,
    #                        nlin_options=maget_options.mbm.nlin)
    #    maget_options.maget.maget.mask = maget_options.maget.maget.mask_only = False   # already done above
    #    del maget_options.mbm

        # again using a weird combination of vectorized and loop constructs ...
    #    s.defer(maget([xfm.resampled for _ix, m in first_level_results.iterrows()
    #                   for xfm in m.build_model.xfms.rigid_xfm],
    #                  options=maget_options,
    #                  prefix="%s_MAGeT" % options.application.pipeline_name,
    #                  output_dir=os.path.join(options.application.output_directory,
    #                                          options.application.pipeline_name + "_processed")))

    # TODO resampling to database model ...

    # TODO there should be one table containing all determinants (first level, overall, resampled first level) for each file
    # and another containing some groupwise information (averages and transforms to the common average)
    return Result(stages=s, output=Namespace(first_level_results=first_level_results,
                                             resampled_determinants=resampled_determinants,
                                             overall_determinants=overall_determinants))
Example #5
0
def chain(options):
    """Create a registration chain pipeline from the given options."""

    # TODO:
    # one overall question for this entire piece of code is how
    # we are going to make sure that we can concatenate/add all
    # the transformations together. Many of the sub-registrations
    # that are performed (inter-subject registration, lsq6 using
    # multiple initial models) are applied to subsets of the entire 
    # data, making it harder to keep the mapping simple/straightforward


    chain_opts = options.chain  # type : ChainConf

    s = Stages()
    
    with open(options.chain.csv_file, 'r') as f:
        subject_info = parse_csv(rows=f, common_time_pt=options.chain.common_time_point)

    output_dir    = options.application.output_directory
    pipeline_name = options.application.pipeline_name

    pipeline_processed_dir = os.path.join(output_dir, pipeline_name + "_processed")
    pipeline_lsq12_common_dir = os.path.join(output_dir, pipeline_name + "_lsq12_" + options.chain.common_time_point_name)
    pipeline_nlin_common_dir = os.path.join(output_dir, pipeline_name + "_nlin_" + options.chain.common_time_point_name)
    pipeline_montage_dir = os.path.join(output_dir, pipeline_name + "_montage")
    
    
    pipeline_subject_info = map_over_time_pt_dict_in_Subject(
                                     lambda subj_str:  MincAtom(name=subj_str, pipeline_sub_dir=pipeline_processed_dir),
                                     subject_info)  # type: Dict[str, Subject[MincAtom]]
    
    # verify that in input files are proper MINC files, and that there 
    # are no duplicates in the filenames
    all_Minc_atoms = []  # type: List[MincAtom]
    for s_id, subj in pipeline_subject_info.items():
        for subj_time_pt, subj_filename in subj.time_pt_dict.items():
            all_Minc_atoms.append(subj_filename)
    # check_MINC_input_files takes strings, so pass along those instead of the actual MincAtoms
    check_MINC_input_files([minc_atom.path for minc_atom in all_Minc_atoms])

    if options.registration.input_space == InputSpace.lsq6 or \
        options.registration.input_space == InputSpace.lsq12:
        # the input files are not going through the lsq6 alignment. This is the place
        # where they will all be resampled using a single like file, and get the same
        # image dimensions/lengths/resolution. So in order for the subsequent stages to
        # finish (mincaverage stages for instance), all files need to have the same
        # image parameters:
        check_MINC_files_have_equal_dimensions_and_resolution([minc_atom.path for minc_atom in all_Minc_atoms],
                                                              additional_msg="Given that the input images are "
                                                                             "already in " + str(options.registration.input_space) +
                                                                             " space, all input files need to have "
                                                                             "the same dimensions/starts/step sizes.")

    if options.registration.input_space not in InputSpace.__members__.values():
        raise ValueError('unrecognized input space: %s; choices: %s' %
                         (options.registration.input_space, ','.join(InputSpace.__members__)))
    
    if options.registration.input_space == InputSpace.native:
        if options.lsq6.target_type == TargetType.bootstrap:
            raise ValueError("\nA bootstrap model is ill-defined for the registration chain. "
                             "(Which file is the 'first' input file?). Please use the --lsq6-target "
                             "flag to specify a target for the lsq6 stage, or use an initial model.")
        if options.lsq6.target_type == TargetType.pride_of_models:
            pride_of_models_dict = get_pride_of_models_mapping(pride_csv=options.lsq6.target_file,
                                                               output_dir=options.application.output_directory,
                                                               pipeline_name=options.application.pipeline_name)
            subj_id_to_subj_with_lsq6_xfm_dict = map_with_index_over_time_pt_dict_in_Subject(
                                    lambda subj_atom, time_point:
                                        s.defer(lsq6_nuc_inorm([subj_atom],
                                                               registration_targets=get_closest_model_from_pride_of_models(
                                                                                        pride_of_models_dict, time_point),
                                                               resolution=options.registration.resolution,
                                                               lsq6_options=options.lsq6,
                                                               lsq6_dir=None,  # never used since no average
                                                               # (could call this "average_dir" with None -> no avg ?)
                                                               subject_matter=options.registration.subject_matter,
                                                               create_qc_images=False,
                                                               create_average=False))[0],
                                        pipeline_subject_info)  # type: Dict[str, Subject[XfmHandler]]
        else:
            # if we are not dealing with a pride of models, we can retrieve a fixed
            # registration target for all input files:
            targets = registration_targets(lsq6_conf=options.lsq6,
                                           app_conf=options.application)
            
            # we want to store the xfm handlers in the same shape as pipeline_subject_info,
            # as such we will call lsq6_nuc_inorm for each file individually and simply extract
            # the first (and only) element from the resulting list via s.defer(...)[0].
            subj_id_to_subj_with_lsq6_xfm_dict = map_over_time_pt_dict_in_Subject(
                                         lambda subj_atom:
                                           s.defer(lsq6_nuc_inorm([subj_atom],
                                                                  registration_targets=targets,
                                                                  resolution=options.registration.resolution,
                                                                  lsq6_options=options.lsq6,
                                                                  lsq6_dir=None, # no average will be create, is just one file...
                                                                  create_qc_images=False,
                                                                  create_average=False,
                                                                  subject_matter=options.registration.subject_matter)
                                                   )[0],
                                         pipeline_subject_info)  # type: Dict[str, Subject[XfmHandler]]

        # create verification images to show the 6 parameter alignment
        montageLSQ6 = pipeline_montage_dir + "/quality_control_montage_lsq6.png"
        # TODO, base scaling factor on resolution of initial model or target
        filesToCreateImagesFrom = []
        for subj_id, subj in subj_id_to_subj_with_lsq6_xfm_dict.items():
            for time_pt, subj_time_pt_xfm in subj.time_pt_dict.items():
                filesToCreateImagesFrom.append(subj_time_pt_xfm.resampled)

        # TODO it's strange that create_quality_control_images gets the montage directory twice
        # TODO (in montages=output=montageLSQ6 and in montage_dir), suggesting a weirdness in create_q_c_images
        lsq6VerificationImages = s.defer(create_quality_control_images(filesToCreateImagesFrom,
                                                                       montage_output=montageLSQ6,
                                                                       montage_dir=pipeline_montage_dir,
                                                                       message=" the input images after the lsq6 alignment"))

    # NB currently LSQ6 expects an array of files, but we have a map.
    # possibilities:
    # - note that pairwise is enough (except for efficiency -- redundant blurring, etc.)
    #   and just use the map fn above with an LSQ6 fn taking only a single source
    # - rewrite LSQ6 to use such a (nested) map
    # - write conversion which creates a tagged array from the map, performs LSQ6,
    #   and converts back
    # - write 'over' which takes a registration, a data structure, and 'get/set' fns ...?
    

    # Intersubject registration: LSQ12/NLIN registration of common-timepoint images
    # The assumption here is that all these files are roughly aligned. Here is a toy
    # schematic of what happens. In this example, the common timepoint is set timepoint 2: 
    #
    #                            ------------
    # subject A    A_time_1   -> | A_time_2 | ->   A_time_3
    # subject B    B_time_1   -> | B_time_2 | ->   B_time_3
    # subject C    C_time_1   -> | C_time_2 | ->   C_time_3
    #                            ------------
    #                                 |
    #                            group_wise registration on time point 2
    #

    # dictionary that holds the transformations from the intersubject images
    # to the final common space average
    intersubj_img_to_xfm_to_common_avg_dict = {}  # type: Dict[MincAtom, XfmHandler]
    if options.registration.input_space in (InputSpace.lsq6, InputSpace.lsq12):
        # no registrations have been performed yet, so we can point to the input files
        s_id_to_intersubj_img_dict = { s_id : subj.intersubject_registration_image
                          for s_id, subj in pipeline_subject_info.items() }
    else:
        # lsq6 aligned images
        # When we ran the lsq6 alignment, we stored the XfmHandlers in the Subject dictionary. So when we call
        # xfmhandler.intersubject_registration_image, this returns an XfmHandler. From which
        # we want to extract the resampled file (in order to continue the registration with)
        s_id_to_intersubj_img_dict = { s_id : subj_with_xfmhandler.intersubject_registration_image.resampled
                          for s_id, subj_with_xfmhandler in subj_id_to_subj_with_lsq6_xfm_dict.items() }
    
    if options.application.verbose:
        print("\nImages that are used for the inter-subject registration:")
        print("ID\timage")
        for subject in s_id_to_intersubj_img_dict:
            print(subject + '\t' + s_id_to_intersubj_img_dict[subject].path)

    # determine what configuration to use for the non linear registration
    nonlinear_configuration = get_nonlinear_configuration_from_options(options.nlin.nlin_protocol,
                                                                       options.nlin.reg_method,
                                                                       options.registration.resolution)

    if options.registration.input_space in [InputSpace.lsq6, InputSpace.native]:
        intersubj_xfms = s.defer(lsq12_nlin_build_model(imgs=list(s_id_to_intersubj_img_dict.values()),
                                                lsq12_conf=options.lsq12,
                                                nlin_conf=nonlinear_configuration,
                                                resolution=options.registration.resolution,
                                                lsq12_dir=pipeline_lsq12_common_dir,
                                                nlin_dir=pipeline_nlin_common_dir,
                                                nlin_prefix="common"))
                                                #, like={atlas_from_init_model_at_this_tp}
    elif options.registration.input_space == InputSpace.lsq12:
        #TODO: write reader that creates a mincANTS configuration out of an input protocol
        # if we're starting with files that are already aligned with an affine transformation
        # (overall scaling is also dealt with), then the target for the non linear registration
        # should be the averge of the current input files.
        first_nlin_target = s.defer(mincaverage(imgs=list(s_id_to_intersubj_img_dict.values()),
                                                name_wo_ext="avg_of_input_files",
                                                output_dir=pipeline_nlin_common_dir))
        intersubj_xfms = s.defer(mincANTS_NLIN_build_model(imgs=list(s_id_to_intersubj_img_dict.values()),
                                                   initial_target=first_nlin_target,
                                                   nlin_dir=pipeline_nlin_common_dir,
                                                   conf=nonlinear_configuration))


    intersubj_img_to_xfm_to_common_avg_dict = { xfm.source : xfm for xfm in intersubj_xfms.output }

    # create one more convenience data structure: a mapping from subject_ID to the xfm_handler
    # that contains the transformation from the subject at the common time point to the
    # common time point average.
    subj_ID_to_xfm_handler_to_common_avg = {}
    for s_id, subj_at_common_tp in s_id_to_intersubj_img_dict.items():
        subj_ID_to_xfm_handler_to_common_avg[s_id] = intersubj_img_to_xfm_to_common_avg_dict[subj_at_common_tp]

    # create verification images to show the inter-subject  alignment
    montage_inter_subject = pipeline_montage_dir + "/quality_control_montage_inter_subject_registration.png"
    avg_and_inter_subject_images = []
    avg_and_inter_subject_images.append(intersubj_xfms.avg_img)
    for xfmh in intersubj_xfms.output:
        avg_and_inter_subject_images.append(xfmh.resampled)

    inter_subject_verification_images = s.defer(create_quality_control_images(
                                                  imgs=avg_and_inter_subject_images,
                                                  montage_output=montage_inter_subject,
                                                  montage_dir=pipeline_montage_dir,
                                                  message=" the result of the inter-subject alignment"))

    if options.application.verbose:
        print("\nTransformations for intersubject images to final nlin common space:")
        print("MincAtom\ttransformation")
        for subj_atom, xfm_handler in intersubj_img_to_xfm_to_common_avg_dict.items():
            print(subj_atom.path + '\t' + xfm_handler.xfm.path)


    ## within-subject registration
    # In the toy scenario below: 
    # subject A    A_time_1   ->   A_time_2   ->   A_time_3
    # subject B    B_time_1   ->   B_time_2   ->   B_time_3
    # subject C    C_time_1   ->   C_time_2   ->   C_time_3
    # 
    # The following registrations are run:
    # 1) A_time_1   ->   A_time_2
    # 2) A_time_2   ->   A_time_3
    #
    # 3) B_time_1   ->   B_time_2
    # 4) B_time_2   ->   B_time_3
    #
    # 5) C_time_1   ->   C_time_2
    # 6) C_time_2   ->   C_time_3    

    subj_id_to_Subjec_for_within_dict = pipeline_subject_info
    if options.registration.input_space == InputSpace.native:
        # we started with input images that were not aligned whatsoever
        # in this case we should use the images that were rigidly
        # aligned files to continue the within-subject registration with
        # # type: Dict[str, Subject[XfmHandler]]
        subj_id_to_Subjec_for_within_dict = map_over_time_pt_dict_in_Subject(lambda x: x.resampled,
                                                                             subj_id_to_subj_with_lsq6_xfm_dict)

    if options.application.verbose:
        print("\n\nWithin subject registrations:")
        for s_id, subj in subj_id_to_Subjec_for_within_dict.items():
            print("ID: ", s_id)
            for time_pt, subj_img in subj.time_pt_dict.items():
                print(time_pt, " ", subj_img.path)
            print("\n")

    # dictionary that maps subject IDs to a list containing:
    # ( [(time_pt_n, time_pt_n+1, XfmHandler_from_n_to_n+1), ..., (,,,)],
    #   index_of_common_time_pt)
    chain_xfms = { s_id : s.defer(intrasubject_registrations(
                                    subj=subj,
                                    linear_conf=default_lsq12_multilevel_minctracc,
                                    nlin_conf=mincANTS_default_conf.replace(
                                        file_resolution=options.registration.resolution,
                                        iterations="100x100x100x50")))
                   for s_id, subj in subj_id_to_Subjec_for_within_dict.items() }

    # create a montage image for each pair of time points
    for s_id, output_from_intra in chain_xfms.items():
        for time_pt_n, time_pt_n_plus_1, transform in output_from_intra[0]:
            montage_chain = pipeline_montage_dir + "/quality_control_chain_ID_" + s_id + \
                            "_timepoint_" + str(time_pt_n) + "_to_" + str(time_pt_n_plus_1) + ".png"
            chain_images = [transform.resampled, transform.target]
            chain_verification_images = s.defer(create_quality_control_images(chain_images,
                                                                              montage_output=montage_chain,
                                                                              montage_dir=pipeline_montage_dir,
                                                                              message="the alignment between ID " + s_id + " time point " +
                                                                                      str(time_pt_n) + " and " + str(time_pt_n_plus_1)))

    if options.application.verbose:
        print("\n\nTransformations gotten from the intrasubject registrations:")
        for s_id, output_from_intra in chain_xfms.items():
            print("ID: ", s_id)
            for time_pt_n, time_pt_n_plus_1, transform in output_from_intra[0]:
                print("Time point: ", time_pt_n, " to ", time_pt_n_plus_1, " trans: ", transform.xfm.path)
            print("\n")

    ## stats
    #
    # The statistic files we want to create are the following:
    # 1) subject <----- subject_common_time_point                              (resampled to common average)
    # 2) subject <----- subject_common_time_point <- common_time_point_average (incorporates inter subject differences)
    # 3) subject_time_point_n <----- subject_time_point_n+1                    (resampled to common average)

    # create transformation from each subject to the final common time point average,
    # and from each subject to the subject's common time point
    (non_rigid_xfms_to_common_avg, non_rigid_xfms_to_common_subj) = s.defer(get_chain_transforms_for_stats(subj_id_to_Subjec_for_within_dict,
                                                                            intersubj_img_to_xfm_to_common_avg_dict,
                                                                            chain_xfms))

    # Ad 1) provide transformations from the subject's common time point to each subject
    #       These are temporary, because they still need to be resampled into the
    #       average common time point space
    determinants_from_subject_common_to_subject = map_over_time_pt_dict_in_Subject(
        lambda xfm: s.defer(determinants_at_fwhms(xfms=[s.defer(invert_xfmhandler(xfm))],
                                                  inv_xfms=[xfm],  # determinants_at_fwhms now vectorized-unhelpful here
                                                  blur_fwhms=options.stats.stats_kernels)),
        non_rigid_xfms_to_common_subj)
    # the content of determinants_from_subject_common_to_subject is:
    #
    # {subject_ID : Subject(inter_subject_time_pt, time_pt_dict)
    #
    # where time_pt_dict contains:
    #
    # {time_point : Tuple(List[Tuple(float, Tuple(MincAtom, MincAtom))],
    #                     List[Tuple(float, Tuple(MincAtom, MincAtom))])
    #
    # And to be a bit more verbose:
    #
    # {time_point : Tuple(relative_stat_files,
    #                     absolute_stat_files)
    #
    # where either the relative_stat_files or the absolute_stat_files look like:
    #
    # [blur_kernel_1, (determinant_file_1, log_of_determinant_file_1),
    #  ...,
    #  blur_kernel_n, (determinant_file_n, log_of_determinant_file_n)]
    #
    # Now the only thing we really want to do, is to resample the actual log
    # determinants that were generated into the space of the common average.
    # To make that a little easier, I'll create a mapping that will contain:
    #
    # {subject_ID: Subject(intersubject_timepoint, {time_pt_1: [stat_file_1, ..., stat_file_n],
    #                                               ...,
    #                                               time_pt_n: [stat_file_1, ..., stat_file_n]}
    # }
    for s_id, subject_with_determinants in determinants_from_subject_common_to_subject.items():
        transform_from_common_subj_to_common_avg = subj_ID_to_xfm_handler_to_common_avg[s_id].xfm
        for time_pt, determinant_info in subject_with_determinants.time_pt_dict.items():
            # here, each determinant_info is a DataFrame where each row contains
            # 'abs_det', 'nlin_det', 'log_nlin_det', 'log_abs_det', 'fwhm' fields
            # of the log-determinants, blurred at various fwhms (corresponding to different rows)
            for _ix, row in determinant_info.iterrows():
                for log_det_file_to_resample in (row.log_full_det, row.log_nlin_det):
                    # TODO the MincAtoms corresponding to the resampled files are never returned
                    new_name_wo_ext = log_det_file_to_resample.filename_wo_ext + "_resampled_to_common"
                    s.defer(mincresample(img=log_det_file_to_resample,
                                         xfm=transform_from_common_subj_to_common_avg,
                                         like=log_det_file_to_resample,
                                         new_name_wo_ext=new_name_wo_ext,
                                         subdir="stats-volumes"))

    # Ad 2) provide transformations from the common avg to each subject. That's the
    #       inverse of what was provided by get_chain_transforms_for_stats()
    determinants_from_common_avg_to_subject = map_over_time_pt_dict_in_Subject(
        lambda xfm: s.defer(determinants_at_fwhms(xfms=[s.defer(invert_xfmhandler(xfm))],
                                                  inv_xfms=[xfm],  # determinants_at_fwhms now vectorized-unhelpful here
                                                  blur_fwhms=options.stats.stats_kernels)),
        non_rigid_xfms_to_common_avg)

    # TODO don't just return an (unnamed-)tuple here
    return Result(stages=s, output=Namespace(non_rigid_xfms_to_common=non_rigid_xfms_to_common_avg,
                                             determinants_from_common_avg_to_subject=determinants_from_common_avg_to_subject,
                                             determinants_from_subject_common_to_subject=determinants_from_subject_common_to_subject))
Example #6
0
           stats_parser,
           chain_parser])
    
    # TODO could abstract and then parametrize by prefix/ns ??
    options = parse(p, sys.argv[1:])

    # TODO: the registration resolution should be set somewhat outside
    # of any actual function? Maybe the right time to set this, is here
    # when options are gathered?
    if not options.registration.resolution:
        # if the target for the registration_chain comes from the pride_of_models
        # we can not use the registration_targets() function. The pride_of_models
        # works in a fairly different way, so we will separate out that option.
        if options.lsq6.target_type == TargetType.pride_of_models:
            pride_of_models_mapping = get_pride_of_models_mapping(options.lsq6.target_file,
                                                                  options.application.output_directory,
                                                                  options.application.pipeline_name)
            # all initial models that are part of the pride of models must have
            # the same resolution (it's currently a requirement). So we can get the
            # resolution from any of the RegistrationTargets:
            random_key = list(pride_of_models_mapping)[0]
            file_for_resolution = pride_of_models_mapping[random_key].registration_standard.path
        else:
            file_for_resolution = registration_targets(lsq6_conf=options.lsq6,
                                                       app_conf=options.application).registration_standard.path
        options.registration = options.registration.replace(
                                   resolution=get_resolution_from_file(file_for_resolution))
    
    # *** *** *** *** *** *** *** *** ***

    chain_result = chain(options)