Example #1
0
 def test_visual_element_api(self):
     material_in = [0.3, 0.4, 0.5, 0.6]
     material_in_2 = [0.6, 0.7, 0.8, 0.9]
     box = shapes.Box(size=[1., 1., 1.])
     visual_element_np = shapes.VisualElement(box, np.eye(4), material_in)
     visual_element_isom = shapes.VisualElement(box, Isometry3.Identity(),
                                                material_in)
     self.assertTrue(
         np.allclose(visual_element_np.getMaterial(), material_in))
     visual_element_np.setMaterial(material_in_2)
     self.assertTrue(
         np.allclose(visual_element_np.getMaterial(), material_in_2))
    def test_rigid_body_api(self):
        # Tests as much of the RigidBody API as is possible in isolation.
        # Adding collision geometry is *not* tested here, as it needs to
        # be done in the context of the RigidBodyTree.
        body = RigidBody()
        name = "body"
        body.set_name(name)
        self.assertEqual(body.get_name(), name)
        inertia = np.eye(6)
        body.set_spatial_inertia(inertia)
        self.assertTrue(np.allclose(inertia, body.get_spatial_inertia()))

        # Try adding a joint to a dummy body.
        body_joint = PrismaticJoint("z", np.eye(4),
                                    np.array([0., 0., 1.]))
        self.assertFalse(body.has_joint())
        dummy_body = RigidBody()
        body.add_joint(dummy_body, body_joint)
        self.assertEqual(body.getJoint(), body_joint)
        self.assertTrue(body.has_joint())

        # Try adding visual geometry.
        box_element = shapes.Box([1.0, 1.0, 1.0])
        box_visual_element = shapes.VisualElement(
            box_element, np.eye(4), [1., 0., 0., 1.])
        body.AddVisualElement(box_visual_element)
        body_visual_elements = body.get_visual_elements()
        self.assertEqual(len(body_visual_elements), 1)
        self.assertEqual(body_visual_elements[0].getGeometry().getShape(),
                         box_visual_element.getGeometry().getShape())

        # Test collision-related methods.
        self.assertEqual(body.get_num_collision_elements(), 0)
        self.assertEqual(len(body.get_collision_element_ids()), 0)
    def test_rigid_body_tree_programmatic_construction(self):
        # Tests RBT programmatic construction methods by assembling
        # a simple RBT with a prismatic and revolute joint, with
        # both visual and collision geometry on the last joint.
        rbt = RigidBodyTree()
        world_body = rbt.world()

        # body_1 is connected to the world via a prismatic joint along
        # the +z axis.
        body_1 = RigidBody()
        body_1.set_name("body_1")
        body_1_joint = PrismaticJoint("z", np.eye(4),
                                      np.array([0., 0., 1.]))
        body_1.add_joint(world_body, body_1_joint)
        rbt.add_rigid_body(body_1)

        # body_2 is connected to body_1 via a revolute joint around the z-axis.
        body_2 = RigidBody()
        body_2.set_name("body_2")
        body_2_joint = RevoluteJoint("theta", np.eye(4),
                                     np.array([0., 0., 1.]))
        body_2.add_joint(body_1, body_2_joint)
        box_element = shapes.Box([1.0, 1.0, 1.0])
        box_visual_element = shapes.VisualElement(
            box_element, np.eye(4), [1., 0., 0., 1.])
        body_2.AddVisualElement(box_visual_element)
        body_2_visual_elements = body_2.get_visual_elements()
        rbt.add_rigid_body(body_2)

        box_collision_element = CollisionElement(box_element, np.eye(4))
        box_collision_element.set_body(body_2)
        rbt.addCollisionElement(box_collision_element, body_2, "default")

        # Define a collision filter group containing bodies 1 and 2 and make
        # that group ignore itself.
        rbt.DefineCollisionFilterGroup(name="test_group")
        rbt.AddCollisionFilterGroupMember(
            group_name="test_group", body_name="body_1", model_id=0)
        rbt.AddCollisionFilterGroupMember(
            group_name="test_group", body_name="body_2", model_id=0)
        rbt.AddCollisionFilterIgnoreTarget("test_group", "test_group")

        self.assertFalse(rbt.initialized())
        rbt.compile()
        self.assertTrue(rbt.initialized())

        # The RBT's position vector should now be [z, theta].
        self.assertEqual(body_1.get_position_start_index(), 0)
        self.assertEqual(body_2.get_position_start_index(), 1)

        self.assertIsNotNone(
            rbt.FindCollisionElement(
                body_2.get_collision_element_ids()[0]))
Example #4
0
def add_box_to_rbt(rbt, box_config, name='box_0'):
    # type: (RigidBodyTree, BoxConfig, str) -> List[str]
    rigid_body = RigidBody()
    rigid_body.set_name(name)

    # The fixed joint of rigid body
    fixed_joint = FixedJoint(name + 'joint', box_config.box_in_world)
    rigid_body.add_joint(rbt.world(), fixed_joint)

    # The visual element
    box_element = shapes.Box(box_config.dim_xyz)
    box_visual_element = shapes.VisualElement(box_element, np.eye(4),
                                              [1., 0., 0., 1.])
    rigid_body.AddVisualElement(box_visual_element)
    rbt.add_rigid_body(rigid_body)

    # The collision element
    box_collision_element = CollisionElement(box_element, np.eye(4))
    box_collision_element.set_body(rigid_body)
    rbt.addCollisionElement(box_collision_element, rigid_body, 'default')
    return [name]
Example #5
0
def add_cylinder_to_rbt(rbt, cylinder_config, name='cylinder_0'):
    # type: (RigidBodyTree, CylinderConfig, str) -> List[str]
    # Construct the shape
    start_point = np.asarray(cylinder_config.start_point)
    end_point = np.asarray(cylinder_config.end_point)
    length = np.linalg.norm(start_point - end_point)  # type: float
    radius = cylinder_config.radius  # type: float
    cylinder_element = shapes.Cylinder(radius=radius, length=length)

    # Compute the transform in world
    cylinder_in_world = np.eye(4)
    z_axis = (end_point - start_point) / (length)
    x_axis = np.array([z_axis[1], -z_axis[0], 0])
    x_axis = x_axis / np.linalg.norm(x_axis)
    y_axis = np.cross(z_axis, x_axis)
    y_axis = y_axis / np.linalg.norm(y_axis)
    center = 0.5 * (start_point + end_point)
    cylinder_in_world[0:3, 0] = x_axis
    cylinder_in_world[0:3, 1] = y_axis
    cylinder_in_world[0:3, 2] = z_axis
    cylinder_in_world[0:3, 3] = center

    # The fixed joint of rigid body
    rigid_body = RigidBody()
    rigid_body.set_name(name)
    fixed_joint = FixedJoint(name + 'joint', cylinder_in_world)
    rigid_body.add_joint(rbt.world(), fixed_joint)

    # The visual element
    cylinder_visual_element = shapes.VisualElement(cylinder_element, np.eye(4),
                                                   [1., 0., 0., 1.])
    rigid_body.AddVisualElement(cylinder_visual_element)
    rbt.add_rigid_body(rigid_body)

    # The collision element
    cylinder_collision_element = CollisionElement(cylinder_element, np.eye(4))
    cylinder_collision_element.set_body(rigid_body)
    rbt.addCollisionElement(cylinder_collision_element, rigid_body, 'default')
    return [name]