def test_schunk_wsg_buttons(self): window = tk.Tk() window.withdraw() # Don't open a window during testing. wsg_buttons = SchunkWsgButtons(window, closed_position=0.008, open_position=0.05, force_limit=50, update_period_sec=1.0) context = wsg_buttons.CreateDefaultContext() output = wsg_buttons.AllocateOutput() # Check the port names. wsg_buttons.GetOutputPort("position") wsg_buttons.GetOutputPort("force_limit") wsg_buttons.open() wsg_buttons.CalcOutput(context, output) np.testing.assert_array_equal(output.get_vector_data(0).get_value(), [0.05]) np.testing.assert_array_equal(output.get_vector_data(1).get_value(), [50.]) wsg_buttons.close() wsg_buttons.CalcOutput(context, output) np.testing.assert_array_equal(output.get_vector_data(0).get_value(), [0.008]) np.testing.assert_array_equal(output.get_vector_data(1).get_value(), [50.])
"object", station.get_mutable_multibody_plant(), station.get_mutable_scene_graph()) station.Finalize() ConnectDrakeVisualizer(builder, station.get_scene_graph(), station.GetOutputPort("pose_bundle")) teleop = builder.AddSystem( JointSliders(station.get_controller_plant(), length=800)) if args.test: teleop.window.withdraw() # Don't display the window when testing. builder.Connect(teleop.get_output_port(0), station.GetInputPort("iiwa_position")) wsg_buttons = builder.AddSystem(SchunkWsgButtons(teleop.window)) builder.Connect(wsg_buttons.GetOutputPort("position"), station.GetInputPort("wsg_position")) builder.Connect(wsg_buttons.GetOutputPort("force_limit"), station.GetInputPort("wsg_force_limit")) diagram = builder.Build() simulator = Simulator(diagram) station_context = diagram.GetMutableSubsystemContext( station, simulator.get_mutable_context()) station_context.FixInputPort( station.GetInputPort("iiwa_feedforward_torque").get_index(), np.zeros(7)) if not args.hardware:
def main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( "--target_realtime_rate", type=float, default=1.0, help="Desired rate relative to real time. See documentation for " "Simulator::set_target_realtime_rate() for details.") parser.add_argument( "--duration", type=float, default=np.inf, help="Desired duration of the simulation in seconds.") parser.add_argument( "--hardware", action='store_true', help="Use the ManipulationStationHardwareInterface instead of an " "in-process simulation.") parser.add_argument( "--test", action='store_true', help="Disable opening the gui window for testing.") parser.add_argument( "--filter_time_const", type=float, default=0.1, help="Time constant for the first order low pass filter applied to" "the teleop commands") parser.add_argument( "--velocity_limit_factor", type=float, default=1.0, help="This value, typically between 0 and 1, further limits the " "iiwa14 joint velocities. It multiplies each of the seven " "pre-defined joint velocity limits. " "Note: The pre-defined velocity limits are specified by " "iiwa14_velocity_limits, found in this python file.") parser.add_argument( '--setup', type=str, default='manipulation_class', help="The manipulation station setup to simulate. ", choices=['manipulation_class', 'clutter_clearing', 'planar']) parser.add_argument( '--schunk_collision_model', type=str, default='box', help="The Schunk collision model to use for simulation. ", choices=['box', 'box_plus_fingertip_spheres']) MeshcatVisualizer.add_argparse_argument(parser) args = parser.parse_args() builder = DiagramBuilder() if args.hardware: station = builder.AddSystem(ManipulationStationHardwareInterface()) station.Connect(wait_for_cameras=False) else: station = builder.AddSystem(ManipulationStation()) if args.schunk_collision_model == "box": schunk_model = SchunkCollisionModel.kBox elif args.schunk_collision_model == "box_plus_fingertip_spheres": schunk_model = SchunkCollisionModel.kBoxPlusFingertipSpheres # Initializes the chosen station type. if args.setup == 'manipulation_class': station.SetupManipulationClassStation( schunk_model=schunk_model) station.AddManipulandFromFile( "drake/examples/manipulation_station/models/" + "061_foam_brick.sdf", RigidTransform(RotationMatrix.Identity(), [0.6, 0, 0])) elif args.setup == 'clutter_clearing': station.SetupClutterClearingStation( schunk_model=schunk_model) ycb_objects = CreateClutterClearingYcbObjectList() for model_file, X_WObject in ycb_objects: station.AddManipulandFromFile(model_file, X_WObject) elif args.setup == 'planar': station.SetupPlanarIiwaStation( schunk_model=schunk_model) station.AddManipulandFromFile( "drake/examples/manipulation_station/models/" + "061_foam_brick.sdf", RigidTransform(RotationMatrix.Identity(), [0.6, 0, 0])) station.Finalize() # If using meshcat, don't render the cameras, since RgbdCamera # rendering only works with drake-visualizer. Without this check, # running this code in a docker container produces libGL errors. if args.meshcat: meshcat = ConnectMeshcatVisualizer( builder, output_port=station.GetOutputPort("geometry_query"), zmq_url=args.meshcat, open_browser=args.open_browser) if args.setup == 'planar': meshcat.set_planar_viewpoint() elif args.setup == 'planar': pyplot_visualizer = builder.AddSystem(PlanarSceneGraphVisualizer( station.get_scene_graph())) builder.Connect(station.GetOutputPort("pose_bundle"), pyplot_visualizer.get_input_port(0)) else: DrakeVisualizer.AddToBuilder(builder, station.GetOutputPort("query_object")) image_to_lcm_image_array = builder.AddSystem( ImageToLcmImageArrayT()) image_to_lcm_image_array.set_name("converter") for name in station.get_camera_names(): cam_port = ( image_to_lcm_image_array .DeclareImageInputPort[PixelType.kRgba8U]( "camera_" + name)) builder.Connect( station.GetOutputPort("camera_" + name + "_rgb_image"), cam_port) image_array_lcm_publisher = builder.AddSystem( LcmPublisherSystem.Make( channel="DRAKE_RGBD_CAMERA_IMAGES", lcm_type=image_array_t, lcm=None, publish_period=0.1, use_cpp_serializer=True)) image_array_lcm_publisher.set_name("rgbd_publisher") builder.Connect( image_to_lcm_image_array.image_array_t_msg_output_port(), image_array_lcm_publisher.get_input_port(0)) robot = station.get_controller_plant() params = DifferentialInverseKinematicsParameters(robot.num_positions(), robot.num_velocities()) time_step = 0.005 params.set_timestep(time_step) # True velocity limits for the IIWA14 (in rad, rounded down to the first # decimal) iiwa14_velocity_limits = np.array([1.4, 1.4, 1.7, 1.3, 2.2, 2.3, 2.3]) if args.setup == 'planar': # Extract the 3 joints that are not welded in the planar version. iiwa14_velocity_limits = iiwa14_velocity_limits[1:6:2] # The below constant is in body frame. params.set_end_effector_velocity_gain([1, 0, 0, 0, 1, 1]) # Stay within a small fraction of those limits for this teleop demo. factor = args.velocity_limit_factor params.set_joint_velocity_limits((-factor*iiwa14_velocity_limits, factor*iiwa14_velocity_limits)) differential_ik = builder.AddSystem(DifferentialIK( robot, robot.GetFrameByName("iiwa_link_7"), params, time_step)) builder.Connect(differential_ik.GetOutputPort("joint_position_desired"), station.GetInputPort("iiwa_position")) teleop = builder.AddSystem(EndEffectorTeleop(args.setup == 'planar')) if args.test: teleop.window.withdraw() # Don't display the window when testing. filter = builder.AddSystem( FirstOrderLowPassFilter(time_constant=args.filter_time_const, size=6)) builder.Connect(teleop.get_output_port(0), filter.get_input_port(0)) builder.Connect(filter.get_output_port(0), differential_ik.GetInputPort("rpy_xyz_desired")) wsg_buttons = builder.AddSystem(SchunkWsgButtons(teleop.window)) builder.Connect(wsg_buttons.GetOutputPort("position"), station.GetInputPort("wsg_position")) builder.Connect(wsg_buttons.GetOutputPort("force_limit"), station.GetInputPort("wsg_force_limit")) # When in regression test mode, log our joint velocities to later check # that they were sufficiently quiet. num_iiwa_joints = station.num_iiwa_joints() if args.test: iiwa_velocities = builder.AddSystem(SignalLogger(num_iiwa_joints)) builder.Connect(station.GetOutputPort("iiwa_velocity_estimated"), iiwa_velocities.get_input_port(0)) else: iiwa_velocities = None diagram = builder.Build() simulator = Simulator(diagram) # This is important to avoid duplicate publishes to the hardware interface: simulator.set_publish_every_time_step(False) station_context = diagram.GetMutableSubsystemContext( station, simulator.get_mutable_context()) station.GetInputPort("iiwa_feedforward_torque").FixValue( station_context, np.zeros(num_iiwa_joints)) # If the diagram is only the hardware interface, then we must advance it a # little bit so that first LCM messages get processed. A simulated plant is # already publishing correct positions even without advancing, and indeed # we must not advance a simulated plant until the sliders and filters have # been initialized to match the plant. if args.hardware: simulator.AdvanceTo(1e-6) q0 = station.GetOutputPort("iiwa_position_measured").Eval( station_context) differential_ik.parameters.set_nominal_joint_position(q0) teleop.SetPose(differential_ik.ForwardKinematics(q0)) filter.set_initial_output_value( diagram.GetMutableSubsystemContext( filter, simulator.get_mutable_context()), teleop.get_output_port(0).Eval(diagram.GetMutableSubsystemContext( teleop, simulator.get_mutable_context()))) differential_ik.SetPositions(diagram.GetMutableSubsystemContext( differential_ik, simulator.get_mutable_context()), q0) simulator.set_target_realtime_rate(args.target_realtime_rate) simulator.AdvanceTo(args.duration) # Ensure that our initialization logic was correct, by inspecting our # logged joint velocities. if args.test: for time, qdot in zip(iiwa_velocities.sample_times(), iiwa_velocities.data().transpose()): # TODO(jwnimmer-tri) We should be able to do better than a 40 # rad/sec limit, but that's the best we can enforce for now. if qdot.max() > 0.1: print(f"ERROR: large qdot {qdot} at time {time}") sys.exit(1)
def main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( "--target_realtime_rate", type=float, default=1.0, help="Desired rate relative to real time. See documentation for " "Simulator::set_target_realtime_rate() for details.") parser.add_argument("--duration", type=float, default=np.inf, help="Desired duration of the simulation in seconds.") parser.add_argument( "--hardware", action='store_true', help="Use the ManipulationStationHardwareInterface instead of an " "in-process simulation.") parser.add_argument("--test", action='store_true', help="Disable opening the gui window for testing.") parser.add_argument( '--setup', type=str, default='manipulation_class', help="The manipulation station setup to simulate. ", choices=['manipulation_class', 'clutter_clearing', 'planar']) MeshcatVisualizer.add_argparse_argument(parser) args = parser.parse_args() builder = DiagramBuilder() if args.hardware: # TODO(russt): Replace this hard-coded camera serial number with a # config file. camera_ids = ["805212060544"] station = builder.AddSystem( ManipulationStationHardwareInterface(camera_ids)) station.Connect(wait_for_cameras=False) else: station = builder.AddSystem(ManipulationStation()) # Initializes the chosen station type. if args.setup == 'manipulation_class': station.SetupManipulationClassStation() station.AddManipulandFromFile( "drake/examples/manipulation_station/models/" + "061_foam_brick.sdf", RigidTransform(RotationMatrix.Identity(), [0.6, 0, 0])) elif args.setup == 'clutter_clearing': station.SetupClutterClearingStation() ycb_objects = CreateClutterClearingYcbObjectList() for model_file, X_WObject in ycb_objects: station.AddManipulandFromFile(model_file, X_WObject) elif args.setup == 'planar': station.SetupPlanarIiwaStation() station.AddManipulandFromFile( "drake/examples/manipulation_station/models/" + "061_foam_brick.sdf", RigidTransform(RotationMatrix.Identity(), [0.6, 0, 0])) station.Finalize() geometry_query_port = station.GetOutputPort("geometry_query") DrakeVisualizer.AddToBuilder(builder, geometry_query_port) if args.meshcat: meshcat = ConnectMeshcatVisualizer(builder, output_port=geometry_query_port, zmq_url=args.meshcat, open_browser=args.open_browser) if args.setup == 'planar': meshcat.set_planar_viewpoint() if args.setup == 'planar': pyplot_visualizer = ConnectPlanarSceneGraphVisualizer( builder, station.get_scene_graph(), geometry_query_port) teleop = builder.AddSystem( JointSliders(station.get_controller_plant(), length=800)) if args.test: teleop.window.withdraw() # Don't display the window when testing. num_iiwa_joints = station.num_iiwa_joints() filter = builder.AddSystem( FirstOrderLowPassFilter(time_constant=2.0, size=num_iiwa_joints)) builder.Connect(teleop.get_output_port(0), filter.get_input_port(0)) builder.Connect(filter.get_output_port(0), station.GetInputPort("iiwa_position")) wsg_buttons = builder.AddSystem(SchunkWsgButtons(teleop.window)) builder.Connect(wsg_buttons.GetOutputPort("position"), station.GetInputPort("wsg_position")) builder.Connect(wsg_buttons.GetOutputPort("force_limit"), station.GetInputPort("wsg_force_limit")) # When in regression test mode, log our joint velocities to later check # that they were sufficiently quiet. if args.test: iiwa_velocities = builder.AddSystem(VectorLogSink(num_iiwa_joints)) builder.Connect(station.GetOutputPort("iiwa_velocity_estimated"), iiwa_velocities.get_input_port(0)) else: iiwa_velocities = None diagram = builder.Build() simulator = Simulator(diagram) iiwa_velocities_log = iiwa_velocities.FindLog(simulator.get_context()) # This is important to avoid duplicate publishes to the hardware interface: simulator.set_publish_every_time_step(False) station_context = diagram.GetMutableSubsystemContext( station, simulator.get_mutable_context()) station.GetInputPort("iiwa_feedforward_torque").FixValue( station_context, np.zeros(num_iiwa_joints)) # If the diagram is only the hardware interface, then we must advance it a # little bit so that first LCM messages get processed. A simulated plant is # already publishing correct positions even without advancing, and indeed # we must not advance a simulated plant until the sliders and filters have # been initialized to match the plant. if args.hardware: simulator.AdvanceTo(1e-6) # Eval the output port once to read the initial positions of the IIWA. q0 = station.GetOutputPort("iiwa_position_measured").Eval(station_context) teleop.set_position(q0) filter.set_initial_output_value( diagram.GetMutableSubsystemContext(filter, simulator.get_mutable_context()), q0) simulator.set_target_realtime_rate(args.target_realtime_rate) simulator.AdvanceTo(args.duration) # Ensure that our initialization logic was correct, by inspecting our # logged joint velocities. if args.test: for time, qdot in zip(iiwa_velocities_log.sample_times(), iiwa_velocities_log.data().transpose()): # TODO(jwnimmer-tri) We should be able to do better than a 40 # rad/sec limit, but that's the best we can enforce for now. if qdot.max() > 0.1: print(f"ERROR: large qdot {qdot} at time {time}") sys.exit(1)