def test_gain(self): k = 42. input_size = 10 systems = [Gain(k=k, size=input_size), Gain(k=k * np.ones(input_size))] for system in systems: context = system.CreateDefaultContext() output = system.AllocateOutput() def mytest(input, expected): context.FixInputPort(0, BasicVector(input)) system.CalcOutput(context, output) self.assertTrue( np.allclose( output.get_vector_data(0).CopyToVector(), expected)) test_input = np.arange(input_size) mytest(np.arange(input_size), k * np.arange(input_size))
def __init__(self): #import pdb; pdb.set_trace() # Create a block diagram containing our system. builder = DiagramBuilder() # add the two decoupled plants (x(s)=u/s^2; y(s)=u/s^2) plant_x = builder.AddSystem(DoubleIntegrator()) plant_y = builder.AddSystem(DoubleIntegrator()) plant_x.set_name("double_integrator_x") plant_y.set_name("double_integrator_y") # add the controller, lead compensator for now just to stablize it controller_x = builder.AddSystem( Controller(tau_num=2., tau_den=.2, k=1.)) controller_y = builder.AddSystem( Controller(tau_num=2., tau_den=.2, k=1.)) controller_x.set_name("controller_x") controller_y.set_name("controller_y") # the perception's "Beam" model with the four sources of noise x_meas_fb = builder.AddSystem(Adder(num_inputs=4, size=1)) x_meas_fb.set_name("x_fb") y_meas_fb = builder.AddSystem(Adder(num_inputs=4, size=1)) y_meas_fb.set_name("y_fb") y_perception = builder.AddSystem(Adder(num_inputs=2, size=1)) y_perception.set_name("range_measurment_y") neg_y_meas = builder.AddSystem(Gain(k=-1., size=1)) neg_y_meas.set_name("neg_y_meas") wall_position = builder.AddSystem(ConstantVectorSource([Y_wall])) p_hit = builder.AddSystem(RandomSource(distribution=RandomDistribution.kGaussian, num_outputs=2,\ sampling_interval_sec=0.01)) p_hit.set_name("GaussionNoise(0,1)") p_short = builder.AddSystem(RandomSource(distribution=RandomDistribution.kExponential, num_outputs=2,\ sampling_interval_sec=0.01)) p_short.set_name("ExponentialNoise(1)") #p_max = builder.AddSystem(RandomSource(distribution=RandomDistribution.kUniform, num_outputs=1,\ # sampling_interval_sec=0.01)) p_rand = builder.AddSystem(RandomSource(distribution=RandomDistribution.kUniform, num_outputs=2,\ sampling_interval_sec=0.01)) p_rand.set_name("UniformNoise(0,1)") #import pdb; pdb.set_trace() p_hit_Dx = builder.AddSystem(Demultiplexer(size=2)) p_hit_Dx.set_name('Dmux1') p_short_Dx = builder.AddSystem(Demultiplexer(size=2)) p_short_Dx.set_name('Dmux2') p_rand_Dx = builder.AddSystem(Demultiplexer(size=2)) p_rand_Dx.set_name('Dmux3') normgain_x = builder.AddSystem(Gain(k=normal_coeff, size=1)) normgain_x.set_name("Sigma_x") normgain_y = builder.AddSystem(Gain(k=normal_coeff, size=1)) normgain_y.set_name("Sigma_y") expgain_x = builder.AddSystem(Gain(k=exp_coeff, size=1)) expgain_x.set_name("Exp_x") expgain_y = builder.AddSystem(Gain(k=exp_coeff, size=1)) expgain_y.set_name("Exp_y") randgain_x = builder.AddSystem(Gain(k=rand_coeff, size=1)) randgain_x.set_name("Rand_x") randgain_y = builder.AddSystem(Gain(k=rand_coeff, size=1)) randgain_y.set_name("Rand_y") #maxgain_x = builder.AddSystem(Adder(num_inputs=2, size=1)) #maxgain_x.set_name("Max_x") #maxgain_y = builder.AddSystem(Adder(num_inputs=2, size=1)) #maxgain_y.set_name("Max_y") # the summation to get the error (closing the loop) summ_x = builder.AddSystem(Adder(num_inputs=2, size=1)) summ_y = builder.AddSystem(Adder(num_inputs=2, size=1)) summ_x.set_name("summation_x") summ_y.set_name("summation_y") neg_x = builder.AddSystem(Gain(k=-1., size=1)) neg_y = builder.AddSystem(Gain(k=-1., size=1)) neg_uy = builder.AddSystem(Gain(k=-1., size=1)) neg_x.set_name("neg_x") neg_y.set_name("neg_y") neg_uy.set_name("neg_uy") # wire up all the blocks (summation to the controller to the plant ...) builder.Connect(summ_x.get_output_port(0), controller_x.get_input_port(0)) # e_x builder.Connect(summ_y.get_output_port(0), controller_y.get_input_port(0)) # e_y builder.Connect(controller_x.get_output_port(0), plant_x.get_input_port(0)) # u_x builder.Connect( controller_y.get_output_port(0), neg_uy.get_input_port(0)) # u_y (to deal with directions) builder.Connect(neg_uy.get_output_port(0), plant_y.get_input_port(0)) # u_y builder.Connect( plant_x.get_output_port(0), x_meas_fb.get_input_port(0)) # perception, nominal state meas builder.Connect(wall_position.get_output_port(0), y_perception.get_input_port(0)) # perception builder.Connect(plant_y.get_output_port(0), neg_y_meas.get_input_port(0)) # perception builder.Connect(neg_y_meas.get_output_port(0), y_perception.get_input_port(1)) # perception, z meas builder.Connect( y_perception.get_output_port(0), y_meas_fb.get_input_port(0)) # perception, nominal state meas builder.Connect(p_hit.get_output_port(0), p_hit_Dx.get_input_port(0)) # demux the noise builder.Connect(p_hit_Dx.get_output_port(0), normgain_x.get_input_port(0)) # normalize Normal dist builder.Connect(normgain_x.get_output_port(0), x_meas_fb.get_input_port(1)) # Normal dist builder.Connect(p_hit_Dx.get_output_port(1), normgain_y.get_input_port(0)) # normalize Normal dist builder.Connect(normgain_y.get_output_port(0), y_meas_fb.get_input_port(1)) # Normal dist builder.Connect(p_short.get_output_port(0), p_short_Dx.get_input_port(0)) # demux the noise builder.Connect(p_short_Dx.get_output_port(0), expgain_x.get_input_port(0)) # normalize Exp dist builder.Connect(expgain_x.get_output_port(0), x_meas_fb.get_input_port(2)) # Exp dist builder.Connect(p_short_Dx.get_output_port(1), expgain_y.get_input_port(0)) # normalize Exp dist builder.Connect(expgain_y.get_output_port(0), y_meas_fb.get_input_port(2)) # Exp dist #builder.Connect(p_max.get_output_port(0), x_meas_fb.get_input_port(3)) # Uniform dist #builder.Connect(p_max.get_output_port(0), y_meas_fb.get_input_port(3)) # Uniform dist builder.Connect(p_rand.get_output_port(0), p_rand_Dx.get_input_port(0)) # normalize Uniform dist builder.Connect(p_rand_Dx.get_output_port(0), randgain_x.get_input_port(0)) # normalize Uniform dist builder.Connect(randgain_x.get_output_port(0), x_meas_fb.get_input_port(3)) # Uniform dist builder.Connect(p_rand_Dx.get_output_port(1), randgain_y.get_input_port(0)) # normalize Uniform dist builder.Connect(randgain_y.get_output_port(0), y_meas_fb.get_input_port(3)) # Uniform dist builder.Connect(x_meas_fb.get_output_port(0), neg_x.get_input_port(0)) # -x builder.Connect(y_meas_fb.get_output_port(0), neg_y.get_input_port(0)) # -y builder.Connect(neg_x.get_output_port(0), summ_x.get_input_port(1)) # r-x builder.Connect(neg_y.get_output_port(0), summ_y.get_input_port(1)) # r-y # Make the desired_state input of the controller, an input to the diagram. builder.ExportInput(summ_x.get_input_port(0)) builder.ExportInput(summ_y.get_input_port(0)) # get telemetry logger_x = LogOutput(plant_x.get_output_port(0), builder) logger_noise_x = LogOutput(x_meas_fb.get_output_port(0), builder) logger_y = LogOutput(plant_y.get_output_port(0), builder) logger_noise_y = LogOutput(y_meas_fb.get_output_port(0), builder) logger_x.set_name("logger_x_state") logger_y.set_name("logger_y_state") logger_noise_x.set_name("x_state_meas") logger_noise_y.set_name("y_meas") # compile the system diagram = builder.Build() diagram.set_name("diagram") # Create the simulator, and simulate for 10 seconds. simulator = Simulator(diagram) context = simulator.get_mutable_context() # First we extract the subsystem context for the plant plant_context_x = diagram.GetMutableSubsystemContext(plant_x, context) plant_context_y = diagram.GetMutableSubsystemContext(plant_y, context) # Then we can set the pendulum state, which is (x, y). z0 = X_0 plant_context_x.get_mutable_continuous_state_vector().SetFromVector(z0) z0 = Y_0 plant_context_y.get_mutable_continuous_state_vector().SetFromVector(z0) # The diagram has a single input port (port index 0), which is the desired_state. context.FixInputPort( 0, [X_d]) # here we assume no perception, closing feedback on state X context.FixInputPort( 1, [Z_d]) #Z_y, keep 3m away, basically we want to be at Y=0 # run the simulation simulator.AdvanceTo(10) t = logger_x.sample_times() #import pdb; pdb.set_trace() # Plot the results. plt.figure() plot_system_graphviz(diagram, max_depth=2) plt.figure() plt.plot(t, logger_noise_x.data().transpose(), label='x_state_meas') plt.plot(t, logger_noise_y.data().transpose(), label='y_meas (z(y))') plt.plot(t, logger_x.data().transpose(), label='x_state') plt.plot(t, logger_y.data().transpose(), label='y_state') plt.xlabel('t') plt.ylabel('x(t),y(t)') plt.legend() plt.show(block=True)