Example #1
0
def test_file(seed, maximum_size, runs, file_extension):

    for _ in range(runs):

        size = _rd_randint(2, maximum_size)
        zeros = _rd_randint(0, size)
        mc_to = _MarkovChain.random(size, zeros=zeros, seed=seed)

        file_handler, file_path = _tf_mkstemp(suffix=file_extension)
        _os_close(file_handler)

        # noinspection PyBroadException
        try:

            mc_to.to_file(file_path)
            mc_from = _MarkovChain.from_file(file_path)

            exception = False

        except Exception:

            mc_from = None
            exception = True

        _os_remove(file_path)

        assert exception is False

        _npt.assert_allclose(mc_from.p, mc_to.p, rtol=1e-5, atol=1e-8)
Example #2
0
def test_dictionary(seed, maximum_size, runs):

    for _ in range(runs):

        size = _rd_randint(2, maximum_size)
        zeros = _rd_randint(0, size)
        mc_to = _MarkovChain.random(size, zeros=zeros, seed=seed)

        d = mc_to.to_dictionary()
        mc_from = _MarkovChain.from_dictionary(d)

        _npt.assert_allclose(mc_from.p, mc_to.p, rtol=1e-5, atol=1e-8)
Example #3
0
    def generate_mc(self, states, window, T):
        # set transition
        p = np.array([[0.2, 0.8], [0.6, 0.4]])
        mc = MarkovChain(p, states)

        # set of transions
        transitions = mc.walk(int(T / window))
        data = []
        for i in range(len(transitions)):
            for c in self.generate_zipf(float(transitions[i]), window):
                data.append(c)
        return data
Example #4
0
    def generate_mc(self, states, window, T, available=False):
        # set transition
        p = np.array([[0.4, 0.6], [0.75, 0.25]])
        mc = MarkovChain(p, states)

        # set of transions
        transitions = mc.walk(int(T / window))
        data = [];
        for transition in range(len(transitions)):
            for c in self.generate_zipf(float(transitions[transition]), window, transition=transition,
                                        available=available):
                data.append(c)
        return data
Example #5
0
def test_matrix(seed, maximum_size, runs):

    _npr.seed(seed)

    for _ in range(runs):

        size = _rd_randint(2, maximum_size)

        m = _npr.randint(101, size=(size, size))
        mc1 = _MarkovChain.from_matrix(m)

        m = mc1.to_matrix()
        mc2 = _MarkovChain.from_matrix(m)

        _npt.assert_allclose(mc1.p, mc2.p, rtol=1e-5, atol=1e-8)
Example #6
0
def test_identity(size, value):

    mc = _MarkovChain.identity(size)

    actual = mc.p
    expected = _np.asarray(value)

    _npt.assert_allclose(actual, expected, rtol=1e-5, atol=1e-8)
Example #7
0
def test_graph(seed, maximum_size, runs):

    for _ in range(runs):

        size = _rd_randint(2, maximum_size)
        zeros = _rd_randint(0, size)
        mc_to = _MarkovChain.random(size, zeros=zeros, seed=seed)

        graph = mc_to.to_graph(False)
        mc_from = _MarkovChain.from_graph(graph)

        _npt.assert_allclose(mc_from.p, mc_to.p, rtol=1e-5, atol=1e-8)

        graph = mc_to.to_graph(True)
        mc_from = _MarkovChain.from_graph(graph)

        _npt.assert_allclose(mc_from.p, mc_to.p, rtol=1e-5, atol=1e-8)
Example #8
0
def test_birth_death(p, q, value):

    mc = _MarkovChain.birth_death(p, q)

    actual = mc.p
    expected = _np.asarray(value)

    _npt.assert_allclose(actual, expected, rtol=1e-5, atol=1e-8)
Example #9
0
def test_urn_model(n, model, value):

    mc = _MarkovChain.urn_model(n, model)

    actual = mc.p
    expected = _np.asarray(value)

    _npt.assert_allclose(actual, expected, rtol=1e-5, atol=1e-8)
Example #10
0
def test_fit_walk(fitting_type, possible_states, walk, k, value):

    mc = _MarkovChain.fit_walk(fitting_type, possible_states, walk, k)

    actual = mc.p
    expected = _np.asarray(value)

    _npt.assert_allclose(actual, expected, rtol=1e-5, atol=1e-8)
Example #11
0
def test_gamblers_ruin(size, w, value):

    mc = _MarkovChain.gamblers_ruin(size, w)

    actual = mc.p
    expected = _np.asarray(value)

    _npt.assert_allclose(actual, expected, rtol=1e-5, atol=1e-8)
Example #12
0
def test_approximation(size, approximation_type, alpha, sigma, rho, k, value):

    mc = _MarkovChain.approximation(size, approximation_type, alpha, sigma,
                                    rho, k)

    actual = mc.p
    expected = _np.asarray(value)

    _npt.assert_allclose(actual, expected, rtol=1e-5, atol=1e-8)
Example #13
0
def test_plot_redistributions(seed, maximum_size, maximum_distributions, runs):

    rs = _rd_getstate()
    _rd_seed(seed)

    configs = []

    for _ in range(runs):

        size = _rd_randint(2, maximum_size)
        zeros = _rd_randint(0, size)

        configs.append((size, zeros))

    _rd_setstate(rs)

    mcs = []
    plot_types = ['heatmap', 'projection']

    for i in range(runs):

        size, zeros = configs[i]
        mc = _MarkovChain.random(size, zeros=zeros, seed=seed)

        if i == 0:
            distributions = mc.redistribute(1, output_last=False)
            initial_status = None
            plot_type = 'projection'
        else:
            r = _rd_randint(1, maximum_distributions)
            distributions = r if _rd_random() < 0.5 else mc.redistribute(r, output_last=False)
            initial_status = None if isinstance(distributions, int) or _rd_random() < 0.5 else distributions[0]
            plot_type = _rd_choice(plot_types)

        configs[i] = (distributions, initial_status, plot_type)
        mcs.append(mc)

    for i in range(runs):

        mc = mcs[i]
        distributions, initial_status, plot_type = configs[i]

        # noinspection PyBroadException
        try:

            figure, _ = _plot_redistributions(mc, distributions, initial_status, plot_type)
            _mplp.close(figure)

            exception = False

        except Exception:
            exception = True

        assert exception is False
Example #14
0
def test_steady_states(p, steady_states):

    actual = MarkovChain(p).pi
    expected = [np.array(steady_state) for steady_state in steady_states]
    matches = 0

    for a in actual:
        for e in expected:
            matches += 1 if np.allclose(a, e, rtol=0.0, atol=1e-6) else 0

    assert matches == len(expected)
Example #15
0
def run(final_result):
    print("Calculating frequency of occurance of packets...")
    #all unique transition pairs counter
    transition_counter = Counter()
    for i in range(len(final_result)):
        for j in range(len(final_result[i])):
            for k in range(len(final_result[i][j]) - 1):
                transition_counter[final_result[i][j][k] + "|||" +
                                   final_result[i][j][k + 1]] += 1
    #total occurance of the first item in the transition pairs
    first_total = Counter()
    for i in transition_counter:
        first_total[i.split("|||")[0]] += transition_counter[i]
    #converting transition_counter to pure frequency in percentage
    final_frequency = defaultdict()
    for i in transition_counter:
        final_frequency[i] = transition_counter[i] / first_total[i.split("|||")
                                                                 [0]]

    #proceed to rule extraction
    rule_extraction(final_frequency)

    #list of all the nodes in first_total
    node_list = []
    for i in first_total:
        node_list.append(i)
    # list of frequencies in matrixs format
    p = [[0] * len(node_list) for _ in range(len(node_list))]
    for i in node_list:
        for j in node_list:
            if i + "|||" + j in final_frequency:
                p[node_list.index(i)][node_list.index(j)] = final_frequency[
                    i + "|||" + j]
    ##node_list rename, save_correspondance to default_dict
    symbol_packet_pair = defaultdict()
    symbol = 0
    print("Converting packet name to symbol...")
    for i in range(len(node_list)):
        symbol_packet_pair[str(symbol)] = node_list[i]
        node_list[i] = str(symbol)
        symbol = symbol + 1
    print("Writing out symbol_packet_pair...")
    with open('extraction_symbol_packet_pair.txt', 'w') as f:
        for i in symbol_packet_pair:
            f.write(i + "   :   " + symbol_packet_pair[i] + "\n")
    print("Creating markov chain...")
    mc = MarkovChain(p, node_list)
    print("Plotting MC...")
    plt.figure.Figure = plot_graph(mc)[0]
    plt.subplots.figure = plot_graph(mc)[1]
    plt.savefig("figure.png")
Example #16
0
def run(final_result):
    transition_counter = Counter()
    for i in range(len(final_result)):
        for j in range(len(final_result[i])):
            for k in range(len(final_result[i][j])-1):
                transition_counter[final_result[i][j][k]+"|||"+final_result[i][j][k+1]]+=1
    first_total = Counter()
    for i in transition_counter:
        first_total[i.split("|||")[0]]+=transition_counter[i]
    final_frequency = defaultdict()
    for i in transition_counter:
        final_frequency[i] = transition_counter[i]/first_total[i.split("|||")[0]]
    #list of all the nodes
    node_list = []
    for i in first_total:
        node_list.append(i)
    # list of frequencies
    p = [ [0]*len(node_list) for _ in range(len(node_list))]
    for i in node_list:
        for j in node_list:
            if i+"|||"+j in final_frequency:
                p[node_list.index(i)][node_list.index(j)]=final_frequency[i+"|||"+j]
    ##node_list rename, save_correspondance to default_dict
    symbol_packet_pair = defaultdict()
    symbol = 0
    print("Converting packet name to symbol...")
    for i in range(len(node_list)):
        symbol_packet_pair[str(symbol)]=node_list[i]
        node_list[i]=str(symbol)
        symbol = symbol+1
    print("Writing out symbol_packet_pair...")
    with open ('extraction_symbol_packet_pair.txt', 'w') as f:
        for i in symbol_packet_pair:
            f.write(i+"   :   "+symbol_packet_pair[i]+"\n")

    mc = MarkovChain(p, node_list)
    print(mc)
    print(mc.transition_probability('17','22'))
Example #17
0
def test_fit_function(possible_states, f, quadrature_type, quadrature_interval,
                      value):

    f = eval('lambda x_index, x_value, y_index, y_value: ' + f)
    quadrature_interval = None if quadrature_interval is None else tuple(
        quadrature_interval)

    mc = _MarkovChain.fit_function(possible_states, f, quadrature_type,
                                   quadrature_interval)

    actual = mc.p
    expected = _np.asarray(value)

    _npt.assert_allclose(actual, expected, rtol=1e-5, atol=1e-8)
Example #18
0
def test_plot_walk(seed, maximum_size, maximum_simulations, runs):

    rs = _rd_getstate()
    _rd_seed(seed)

    configs = []

    for _ in range(runs):

        size = _rd_randint(2, maximum_size)
        zeros = _rd_randint(0, size)

        configs.append((size, zeros))

    _rd_setstate(rs)

    mcs = []
    plot_types = ['histogram', 'sequence', 'transitions']

    for i in range(runs):

        size, zeros = configs[i]
        mc = _MarkovChain.random(size, zeros=zeros, seed=seed)

        r = _rd_randint(2, maximum_simulations)

        walk = r if _rd_random() < 0.5 else mc.walk(r, output_indices=True)
        initial_state = None if isinstance(walk, int) or _rd_random() < 0.5 else walk[0]
        plot_type = _rd_choice(plot_types)

        configs[i] = (walk, initial_state, plot_type)
        mcs.append(mc)

    for i in range(runs):

        mc = mcs[i]
        walk, initial_state, plot_type = configs[i]

        # noinspection PyBroadException
        try:

            figure, _ = _plot_walk(mc, walk, initial_state, plot_type)
            _mplp.close(figure)

            exception = False

        except Exception:
            exception = True

        assert exception is False
Example #19
0
def test_plot_eigenvalues(seed, maximum_size, runs):

    for _ in range(runs):

        size = _rd_randint(2, maximum_size)
        zeros = _rd_randint(0, size)
        mc = _MarkovChain.random(size, zeros=zeros, seed=seed)

        # noinspection PyBroadException
        try:

            figure, _ = _plot_eigenvalues(mc)
            _mplp.close(figure)

            exception = False

        except Exception:
            exception = True

        assert exception is False
Example #20
0
def main():
    for file in files:
        f = open(file, "r")
        lines = f.readlines()
        res = [line.split() for line in lines]
        cross_tab = transition_matrix(res)
        f.close()
        # print(file[:-4])
        # print(cross_tab)
        mc = MarkovChain(cross_tab.values, cross_tab.index._data)
        r = open(file.replace("_trans", "_matrix"), "w")
        r.write(str(mc.p))
        r.close()
        # matplotlib.interactive(True)
        figure, _ = plot_graph(
            mc,
            dpi=1000,
            path="/home/ja/Dokumenty/Pepper/data_analisys/" +
            file.replace("_trans.txt", "_graph.svg"))
        plt.close()
Example #21
0
def test_plot_graph(seed, maximum_size, runs):

    rs = _rd_getstate()
    _rd_seed(seed)

    configs = []

    for _ in range(runs):

        size = _rd_randint(2, maximum_size)
        zeros = _rd_randint(0, size)

        configs.append((size, zeros) + tuple(_rd_random() < 0.5 for _ in range(4)))

    _rd_setstate(rs)

    for i in range(runs):

        size, zeros, nodes_color, nodes_type, edges_color, edges_value = configs[i]

        mc = _MarkovChain.random(size, zeros=zeros, seed=seed)

        # noinspection PyBroadException
        try:

            figure, _ = _plot_graph(mc, nodes_color=nodes_color, nodes_type=nodes_type, edges_color=edges_color, edges_value=edges_value, force_standard=True)
            _mplp.close(figure)

            figure, _ = _plot_graph(mc, nodes_color=nodes_color, nodes_type=nodes_type, edges_color=edges_color, edges_value=edges_value, force_standard=False)
            _mplp.close(figure)

            exception = False

        except Exception:
            exception = True

        assert exception is False
Example #22
0
def test_random(seed, size, zeros, mask, value):

    mc = _MarkovChain.random(size, None, zeros, mask, seed)

    actual = mc.p
    expected = _np.asarray(value)

    _npt.assert_allclose(actual, expected, rtol=1e-5, atol=1e-8)

    if zeros > 0 and mask is None:

        actual = size**2 - _np.count_nonzero(mc.p)
        expected = zeros

        assert actual == expected

    if mask is not None:

        indices = ~_np.isnan(_np.asarray(mask))

        actual = mc.p[indices]
        expected = _np.asarray(value)[indices]

        _npt.assert_allclose(actual, expected, rtol=1e-5, atol=1e-8)
Example #23
0
from pydtmc import (MarkovChain, plot_graph)

from pytest import (mark)
import matplotlib.pyplot as plt
p = [[0.2, 0.7, 0.0, 0.1], [0.0, 0.6, 0.3, 0.1], [0.0, 0.0, 1.0, 0.0],
     [0.5, 0.0, 0.5, 0.0]]
mc = MarkovChain(p, ['s1', 's2', 's3', 's4'])
print(mc)
plt.figure.Figure = plot_graph(mc)[0]
plt.subplots.figure = plot_graph(mc)[1]
#pp.axes._subplots.AxesSubplot = plot_graph(mc)[1]
plt.savefig("figure.png")
print(type(plot_graph(mc)[0]))
print(type(plot_graph(mc)[1]))

#s1/s2/s3/r1/r4/s2/s3/r4/r3/s2/s1/r3/r2/
#counter[s1/r2]: 90%
#counter[s1se1se2/r2]: 80%
Example #24
0
def test_periodicity(p, period):

    mc = MarkovChain(p)

    assert mc.period == period
    assert mc.is_aperiodic == (period == 1)