def draw_chart(cls, data): kline = ( Kline().add_xaxis(xaxis_data=data["times"]).add_yaxis( series_name="", y_axis=data["datas"], itemstyle_opts=opts.ItemStyleOpts( color="#ef232a", color0="#14b143", border_color="#ef232a", border_color0="#14b143", ), markpoint_opts=opts.MarkPointOpts(data=[ opts.MarkPointItem(type_="max", name="最大值"), opts.MarkPointItem(type_="min", name="最小值"), ]), markline_opts=opts.MarkLineOpts( label_opts=opts.LabelOpts(position="middle", color="blue", font_size=15), data=cls.split_data_part(data), symbol=["circle", "none"], ), ).set_series_opts(markarea_opts=opts.MarkAreaOpts( is_silent=True, data=cls.split_data_part(data))). set_global_opts( title_opts=opts.TitleOpts(title="K线周期图表", pos_left="0"), xaxis_opts=opts.AxisOpts( type_="category", is_scale=True, boundary_gap=False, axisline_opts=opts.AxisLineOpts(is_on_zero=False), splitline_opts=opts.SplitLineOpts(is_show=False), split_number=20, min_="dataMin", max_="dataMax", ), yaxis_opts=opts.AxisOpts( is_scale=True, splitline_opts=opts.SplitLineOpts(is_show=True)), tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="line"), datazoom_opts=[ opts.DataZoomOpts(is_show=False, type_="inside", xaxis_index=[0, 0], range_end=100), opts.DataZoomOpts(is_show=True, xaxis_index=[0, 1], pos_top="97%", range_end=100), opts.DataZoomOpts(is_show=False, xaxis_index=[0, 2], range_end=100), opts.DataZoomOpts(is_show=False, xaxis_index=[0, 3], range_end=100), ], # 三个图的 axis 连在一块 # axispointer_opts=opts.AxisPointerOpts( # is_show=True, # link=[{"xAxisIndex": "all"}], # label=opts.LabelOpts(background_color="#777"), # ), )) kline_line = ( Line().add_xaxis(xaxis_data=data["times"]) # # EMA10 # .add_yaxis( # series_name="EMA10", # y_axis=data["ema10"], # xaxis_index=2, # yaxis_index=2, # label_opts=opts.LabelOpts(is_show=False), # ) # EMA144 # .add_yaxis( # series_name="EMA144", # y_axis=data["ema144"], # xaxis_index=2, # yaxis_index=2, # label_opts=opts.LabelOpts(is_show=False), # ) # boll_median .add_yaxis( series_name="median", y_axis=data["boll_median"], xaxis_index=2, yaxis_index=2, label_opts=opts.LabelOpts(is_show=False), ) # boll_upper .add_yaxis( series_name="upper", y_axis=data["boll_upper"], xaxis_index=2, yaxis_index=2, label_opts=opts.LabelOpts(is_show=False), ) # boll_lower .add_yaxis( series_name="lower", y_axis=data["boll_lower"], xaxis_index=2, yaxis_index=2, label_opts=opts.LabelOpts(is_show=False), ).set_global_opts( xaxis_opts=opts.AxisOpts( type_="category", grid_index=1, axislabel_opts=opts.LabelOpts(is_show=False), ), yaxis_opts=opts.AxisOpts( grid_index=1, split_number=3, axisline_opts=opts.AxisLineOpts(is_on_zero=False), axistick_opts=opts.AxisTickOpts(is_show=False), splitline_opts=opts.SplitLineOpts(is_show=False), axislabel_opts=opts.LabelOpts(is_show=True), ), )) # Overlap Kline + Line overlap_kline_line = kline.overlap(kline_line) # Bar-1 bar_1 = ( Bar().add_xaxis(xaxis_data=data["times"]).add_yaxis( series_name="Volumn", yaxis_data=data["vols"], xaxis_index=1, yaxis_index=1, label_opts=opts.LabelOpts(is_show=False), # 根据 echarts demo 的原版是这么写的 # itemstyle_opts=opts.ItemStyleOpts( # color=JsCode(""" # function(params) { # var colorList; # if (data.datas[params.dataIndex][1]>data.datas[params.dataIndex][0]) { # colorList = '#ef232a'; # } else { # colorList = '#14b143'; # } # return colorList; # } # """) # ) # 改进后在 grid 中 add_js_funcs 后变成如下 itemstyle_opts=opts.ItemStyleOpts(color=JsCode(""" function(params) { var colorList; if (barData[params.dataIndex][1] > barData[params.dataIndex][0]) { colorList = '#ef232a'; } else { colorList = '#14b143'; } return colorList; } """)), ).set_global_opts( xaxis_opts=opts.AxisOpts( type_="category", grid_index=1, axislabel_opts=opts.LabelOpts(is_show=False), ), legend_opts=opts.LegendOpts(is_show=False), )) # Bar-2 (Overlap Bar + Line) bar_2 = (Bar().add_xaxis(xaxis_data=data["times"]).add_yaxis( series_name="MACD", yaxis_data=data["macds"], xaxis_index=2, yaxis_index=2, label_opts=opts.LabelOpts(is_show=False), itemstyle_opts=opts.ItemStyleOpts(color=JsCode(""" function(params) { var colorList; if (params.data >= 0) { colorList = '#ef232a'; } else { colorList = '#14b143'; } return colorList; } """)), ).set_global_opts( xaxis_opts=opts.AxisOpts( type_="category", grid_index=2, axislabel_opts=opts.LabelOpts(is_show=False), ), yaxis_opts=opts.AxisOpts( grid_index=2, split_number=4, axisline_opts=opts.AxisLineOpts(is_on_zero=False), axistick_opts=opts.AxisTickOpts(is_show=False), splitline_opts=opts.SplitLineOpts(is_show=False), axislabel_opts=opts.LabelOpts(is_show=True), ), legend_opts=opts.LegendOpts(is_show=False), )) line_2 = (Line().add_xaxis(xaxis_data=data["times"]).add_yaxis( series_name="DIF", y_axis=data["difs"], xaxis_index=2, yaxis_index=2, label_opts=opts.LabelOpts(is_show=False), ).add_yaxis( series_name="DEA", y_axis=data["deas"], xaxis_index=2, yaxis_index=2, label_opts=opts.LabelOpts(is_show=False), ).set_global_opts(legend_opts=opts.LegendOpts(is_show=False))) rsi_line = (Line().add_xaxis(xaxis_data=data["times"]).add_yaxis( series_name="rsi6", y_axis=data["rsi6"], xaxis_index=2, yaxis_index=2, label_opts=opts.LabelOpts(is_show=False), ).add_yaxis( series_name="rsi12", y_axis=data["rsi12"], xaxis_index=2, yaxis_index=2, label_opts=opts.LabelOpts(is_show=False), ).add_yaxis( series_name="rsi24", y_axis=data["rsi24"], xaxis_index=2, yaxis_index=2, label_opts=opts.LabelOpts(is_show=False), ).set_global_opts(legend_opts=opts.LegendOpts(is_show=False))) # MACD overlap_bar_line = bar_2.overlap(line_2) # 最后的 Grid grid_chart = Grid( init_opts=opts.InitOpts(width="1400px", height="800px")) # 这个是为了把 data.datas 这个数据写入到 html 中,还没想到怎么跨 series 传值 # demo 中的代码也是用全局变量传的 grid_chart.add_js_funcs("var barData = {}".format(data["datas"])) # K线图和 MA5 的折线图 grid_chart.add( overlap_kline_line, grid_opts=opts.GridOpts(pos_left="4%", pos_right="1%", height="45%"), ) # Volumn 柱状图 grid_chart.add( bar_1, grid_opts=opts.GridOpts(pos_left="4%", pos_right="1%", pos_top="56%", height="10%"), ) # MACD DIFS DEAS grid_chart.add( overlap_bar_line, grid_opts=opts.GridOpts(pos_left="4%", pos_right="1%", pos_top="68%", height="14%"), ) # rsi6 grid_chart.add( rsi_line, grid_opts=opts.GridOpts(pos_left="4%", pos_right="1%", pos_top="84%", height="10%"), ) return grid_chart.render_embed()
def draw_kline(chart_data): # [open, close, lowest, highest] kline_data = [data[1:-1] for data in chart_data["values"]] markpoint_item = [ opts.MarkPointItem(name="AI", coord=coord, value=value, symbol='pin', symbol_size=[35, 20], itemstyle_opts=opts.ItemStyleOpts(color='rgb(255,0,0)')) for coord, value in zip(chart_data["ai_markpoint_coord"], chart_data["ai_markpoint_value"]) # ] ] + \ [ opts.MarkPointItem(name="每日周線談整突破", coord=coord, value=value, symbol='pin', symbol_size=[35, 20], itemstyle_opts=opts.ItemStyleOpts(color='rgb(0,255,0)')) for coord, value in zip(chart_data["other1_markpoint_coord"], chart_data["other1_markpoint_value"]) ] + \ [ opts.MarkPointItem(name="每日日線", coord=coord, value=value, symbol='pin', symbol_size=[35, 20], itemstyle_opts=opts.ItemStyleOpts(color='rgb(0,0,255)')) for coord, value in zip(chart_data["other2_markpoint_coord"], chart_data["other2_markpoint_value"]) ] + \ [ opts.MarkPointItem(name="每日日線盤整突破", coord=coord, value=value, symbol='pin', symbol_size=[35, 20], itemstyle_opts=opts.ItemStyleOpts(color='rgb(255,255,0)')) for coord, value in zip(chart_data["other3_markpoint_coord"], chart_data["other3_markpoint_value"]) ] + \ [ opts.MarkPointItem(name="每日日線布林條件", coord=coord, value=value, symbol='pin', symbol_size=[35, 20], itemstyle_opts=opts.ItemStyleOpts(color='rgb(0,255,255)')) for coord, value in zip(chart_data["other4_markpoint_coord"], chart_data["other4_markpoint_value"]) ] kline = (Kline().add_xaxis( xaxis_data=chart_data["categoryData"]).add_yaxis( series_name="Dow-Jones index", y_axis=kline_data, itemstyle_opts=opts.ItemStyleOpts(color="#ec0000", color0="#00da3c"), markpoint_opts=opts.MarkPointOpts(data=markpoint_item), ).set_global_opts( legend_opts=opts.LegendOpts(is_show=False, pos_bottom=10, pos_left="center"), datazoom_opts=[ opts.DataZoomOpts( is_show=False, type_="inside", xaxis_index=[0, 1], range_start=98, range_end=100, ), opts.DataZoomOpts( is_show=True, xaxis_index=[0, 1], type_="slider", pos_top="85%", range_start=98, range_end=100, ), ], yaxis_opts=opts.AxisOpts( is_scale=True, splitarea_opts=opts.SplitAreaOpts( is_show=True, areastyle_opts=opts.AreaStyleOpts(opacity=1)), ), tooltip_opts=opts.TooltipOpts( trigger="axis", axis_pointer_type="cross", background_color="rgba(245, 245, 245, 0.8)", border_width=1, border_color="#ccc", textstyle_opts=opts.TextStyleOpts(color="#000"), ), visualmap_opts=opts.VisualMapOpts( is_show=False, dimension=2, series_index=5, is_piecewise=True, pieces=[ { "value": 1, "color": "#00da3c" }, { "value": -1, "color": "#ec0000" }, ], ), axispointer_opts=opts.AxisPointerOpts( is_show=True, link=[{ "xAxisIndex": "all" }], label=opts.LabelOpts(background_color="#777"), ), brush_opts=opts.BrushOpts( x_axis_index="all", brush_link="all", out_of_brush={"colorAlpha": 0.1}, brush_type="lineX", ), )) line = (Line().add_xaxis(xaxis_data=chart_data["categoryData"]).add_yaxis( series_name="MA5", y_axis=calculate_ma(day_count=5, data=chart_data), is_smooth=True, is_hover_animation=False, linestyle_opts=opts.LineStyleOpts(width=3, opacity=0.5), label_opts=opts.LabelOpts(is_show=False), ).add_yaxis( series_name="MA10", y_axis=calculate_ma(day_count=10, data=chart_data), is_smooth=True, is_hover_animation=False, linestyle_opts=opts.LineStyleOpts(width=3, opacity=0.5), label_opts=opts.LabelOpts(is_show=False), ).add_yaxis( series_name="MA20", y_axis=calculate_ma(day_count=20, data=chart_data), is_smooth=True, is_hover_animation=False, linestyle_opts=opts.LineStyleOpts(width=3, opacity=0.5), label_opts=opts.LabelOpts(is_show=False), ).add_yaxis( series_name="MA30", y_axis=calculate_ma(day_count=30, data=chart_data), is_smooth=True, is_hover_animation=False, linestyle_opts=opts.LineStyleOpts(width=3, opacity=0.5), label_opts=opts.LabelOpts(is_show=False), ).set_global_opts(xaxis_opts=opts.AxisOpts(type_="category"))) bar = (Bar().add_xaxis(xaxis_data=chart_data["categoryData"]).add_yaxis( series_name="Volume", y_axis=chart_data["volumes"], xaxis_index=1, yaxis_index=1, label_opts=opts.LabelOpts(is_show=False), ).set_global_opts( xaxis_opts=opts.AxisOpts( type_="category", is_scale=True, grid_index=1, boundary_gap=False, axisline_opts=opts.AxisLineOpts(is_on_zero=False), axistick_opts=opts.AxisTickOpts(is_show=False), splitline_opts=opts.SplitLineOpts(is_show=False), axislabel_opts=opts.LabelOpts(is_show=False), split_number=20, min_="dataMin", max_="dataMax", ), yaxis_opts=opts.AxisOpts( grid_index=1, is_scale=True, split_number=2, axislabel_opts=opts.LabelOpts(is_show=False), axisline_opts=opts.AxisLineOpts(is_show=False), axistick_opts=opts.AxisTickOpts(is_show=False), splitline_opts=opts.SplitLineOpts(is_show=False), ), legend_opts=opts.LegendOpts(is_show=False), )) # Kline And Line overlap_kline_line = kline.overlap(line) # Grid Overlap + Bar grid_chart = Grid(init_opts=opts.InitOpts( width="1000px", height="800px", animation_opts=opts.AnimationOpts(animation=False), )) grid_chart.add( overlap_kline_line, grid_opts=opts.GridOpts(pos_left="10%", pos_right="8%", height="50%"), ) grid_chart.add( bar, grid_opts=opts.GridOpts(pos_left="10%", pos_right="8%", pos_top="63%", height="16%"), ) return grid_chart.render_embed()