Example #1
0
def main(args):
    eddl.download_mnist()

    num_classes = 10

    in_ = eddl.Input([784])

    layer = in_
    layer = eddl.Reshape(layer, [1, 28, 28])
    layer = eddl.RandomCropScale(layer, [0.9, 1.0])
    layer = eddl.Reshape(layer, [-1])
    layer = eddl.ReLu(
        eddl.GaussianNoise(
            eddl.BatchNormalization(eddl.Dense(layer, 1024), True), 0.3))
    layer = eddl.ReLu(
        eddl.GaussianNoise(
            eddl.BatchNormalization(eddl.Dense(layer, 1024), True), 0.3))
    layer = eddl.ReLu(
        eddl.GaussianNoise(
            eddl.BatchNormalization(eddl.Dense(layer, 1024), True), 0.3))
    out = eddl.Softmax(eddl.Dense(layer, num_classes))
    net = eddl.Model([in_], [out])

    eddl.build(
        net, eddl.sgd(0.01, 0.9), ["soft_cross_entropy"],
        ["categorical_accuracy"],
        eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem))

    eddl.summary(net)
    eddl.plot(net, "model.pdf")

    x_train = Tensor.load("mnist_trX.bin")
    y_train = Tensor.load("mnist_trY.bin")
    x_test = Tensor.load("mnist_tsX.bin")
    y_test = Tensor.load("mnist_tsY.bin")
    if args.small:
        x_train = x_train.select([":6000"])
        y_train = y_train.select([":6000"])
        x_test = x_test.select([":1000"])
        y_test = y_test.select([":1000"])

    x_train.div_(255.0)
    x_test.div_(255.0)

    eddl.fit(net, [x_train], [y_train], args.batch_size, args.epochs)
    eddl.evaluate(net, [x_test], [y_test], bs=args.batch_size)

    # LR annealing
    if args.epochs < 4:
        return
    eddl.setlr(net, [0.005, 0.9])
    eddl.fit(net, [x_train], [y_train], args.batch_size, args.epochs // 2)
    eddl.evaluate(net, [x_test], [y_test], bs=args.batch_size)
    eddl.setlr(net, [0.001, 0.9])
    eddl.fit(net, [x_train], [y_train], args.batch_size, args.epochs // 2)
    eddl.evaluate(net, [x_test], [y_test], bs=args.batch_size)
    eddl.setlr(net, [0.0001, 0.9])
    eddl.fit(net, [x_train], [y_train], args.batch_size, args.epochs // 4)
    eddl.evaluate(net, [x_test], [y_test], bs=args.batch_size)
    print("All done")
Example #2
0
def main(args):
    if not os.path.isfile(args.input):
        raise RuntimeError("input file '%s' not found" % args.input)

    eddl.download_mnist()

    print("importing net from", args.input)
    net = eddl.import_net_from_onnx_file(args.input)
    print("input.shape:", net.layers[0].input.shape)
    print("output size =", len(net.lout))

    eddl.build(
        net,
        eddl.rmsprop(0.01),
        ["soft_cross_entropy"],
        ["categorical_accuracy"],
        eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem),
        False  # do not initialize weights to random values
    )

    net.resize(args.batch_size)  # resize manually since we don't use "fit"
    eddl.summary(net)

    x_test = Tensor.load("mnist_tsX.bin")
    y_test = Tensor.load("mnist_tsY.bin")

    x_test.div_(255.0)

    eddl.evaluate(net, [x_test], [y_test], bs=args.batch_size)
    print("All done")
Example #3
0
def load_cifar(path=None, download=False):

    if path is None:
        path = "./"

    if download:
        eddl.download_cifar10()
    print(path)
    try:
        x_train = Tensor.load(path + "/cifar_trX.bin")
        y_train = Tensor.load(path + "/cifar_trY.bin")
    except:
        print(
            "Fail to load the train set, make sure you supply the correct path"
        )
        exit()

    try:
        x_test = Tensor.load(path + "/cifar_tsX.bin")
        y_test = Tensor.load(path + "/cifar_tsY.bin")
    except:
        print(
            "Fail to load the test set, make sure you supply the correct path")
        exit()

    x_train.div_(255.0)
    x_test.div_(255.0)

    return (x_train, y_train), (x_test, y_test)
Example #4
0
def main(args):
    eddl.download_cifar10()

    num_classes = 10

    in_ = eddl.Input([3, 32, 32])

    layer = in_
    layer = eddl.RandomCropScale(layer, [0.8, 1.0])
    layer = eddl.RandomHorizontalFlip(layer)
    layer = eddl.ReLu(BG(eddl.Conv(layer, 64, [3, 3], [1, 1], "same", False)))
    layer = eddl.Pad(layer, [0, 1, 1, 0])
    for i in range(3):
        layer = ResBlock(layer, 64, 0, i == 0)
    for i in range(4):
        layer = ResBlock(layer, 128, i == 0)
    for i in range(6):
        layer = ResBlock(layer, 256, i == 0)
    for i in range(3):
        layer = ResBlock(layer, 512, i == 0)
    layer = eddl.MaxPool(layer, [4, 4])
    layer = eddl.Reshape(layer, [-1])

    out = eddl.Softmax(eddl.Dense(layer, num_classes))
    net = eddl.Model([in_], [out])

    eddl.build(
        net, eddl.sgd(0.001, 0.9), ["soft_cross_entropy"],
        ["categorical_accuracy"],
        eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem))

    eddl.summary(net)
    eddl.plot(net, "model.pdf", "TB")

    x_train = Tensor.load("cifar_trX.bin")
    y_train = Tensor.load("cifar_trY.bin")
    x_train.div_(255.0)

    x_test = Tensor.load("cifar_tsX.bin")
    y_test = Tensor.load("cifar_tsY.bin")
    x_test.div_(255.0)

    if args.small:
        # this is slow, make it really small
        x_train = x_train.select([":500"])
        y_train = y_train.select([":500"])
        x_test = x_test.select([":100"])
        y_test = y_test.select([":100"])

    lr = 0.01
    for j in range(3):
        lr /= 10.0
        eddl.setlr(net, [lr, 0.9])
        for i in range(args.epochs):
            eddl.fit(net, [x_train], [y_train], args.batch_size, 1)
            eddl.evaluate(net, [x_test], [y_test], bs=args.batch_size)
    print("All done")
Example #5
0
def main(args):
    eddl.download_cifar10()

    num_classes = 10

    in_ = eddl.Input([3, 32, 32])

    layer = in_
    layer = eddl.MaxPool(eddl.ReLu(Normalization(
        eddl.Conv(layer, 32, [3, 3], [1, 1])
    )), [2, 2])
    layer = eddl.MaxPool(eddl.ReLu(Normalization(
        eddl.Conv(layer, 64, [3, 3], [1, 1])
    )), [2, 2])
    layer = eddl.MaxPool(eddl.ReLu(Normalization(
        eddl.Conv(layer, 128, [3, 3], [1, 1])
    )), [2, 2])
    layer = eddl.MaxPool(eddl.ReLu(Normalization(
        eddl.Conv(layer, 256, [3, 3], [1, 1])
    )), [2, 2])
    layer = eddl.GlobalMaxPool(layer)
    layer = eddl.Flatten(layer)
    layer = eddl.Activation(eddl.Dense(layer, 128), "relu")

    out = eddl.Softmax(eddl.Dense(layer, num_classes))
    net = eddl.Model([in_], [out])

    eddl.build(
        net,
        eddl.adam(0.001),
        ["soft_cross_entropy"],
        ["categorical_accuracy"],
        eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem)
    )

    eddl.summary(net)
    eddl.plot(net, "model.pdf")

    x_train = Tensor.load("cifar_trX.bin")
    y_train = Tensor.load("cifar_trY.bin")
    x_train.div_(255.0)

    x_test = Tensor.load("cifar_tsX.bin")
    y_test = Tensor.load("cifar_tsY.bin")
    x_test.div_(255.0)

    if args.small:
        x_train = x_train.select([":5000"])
        y_train = y_train.select([":5000"])
        x_test = x_test.select([":1000"])
        y_test = y_test.select([":1000"])

    for i in range(args.epochs):
        eddl.fit(net, [x_train], [y_train], args.batch_size, 1)
        eddl.evaluate(net, [x_test], [y_test], bs=args.batch_size)
    print("All done")
Example #6
0
def main(args):
    eddl.download_cifar10()

    num_classes = 10

    in_ = eddl.Input([3, 32, 32])

    layer = in_
    layer = eddl.RandomCropScale(layer, [0.8, 1.0])
    layer = eddl.RandomFlip(layer, 1)
    layer = eddl.ReLu(BG(eddl.Conv(layer, 64, [3, 3], [1, 1])))
    layer = eddl.Pad(layer, [0, 1, 1, 0])
    layer = ResBlock(layer, 64, 2, True)
    layer = ResBlock(layer, 64, 2, False)
    layer = ResBlock(layer, 128, 2, True)
    layer = ResBlock(layer, 128, 2, False)
    layer = ResBlock(layer, 256, 2, True)
    layer = ResBlock(layer, 256, 2, False)
    layer = ResBlock(layer, 256, 2, True)
    layer = ResBlock(layer, 256, 2, False)
    layer = eddl.Reshape(layer, [-1])
    layer = eddl.ReLu(BG(eddl.Dense(layer, 512)))

    out = eddl.Softmax(eddl.Dense(layer, num_classes))
    net = eddl.Model([in_], [out])

    eddl.build(
        net,
        eddl.sgd(0.01, 0.9),
        ["soft_cross_entropy"],
        ["categorical_accuracy"],
        eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem)
    )

    eddl.summary(net)
    eddl.plot(net, "model.pdf", "TB")

    x_train = Tensor.load("cifar_trX.bin")
    y_train = Tensor.load("cifar_trY.bin")
    x_train.div_(255.0)

    x_test = Tensor.load("cifar_tsX.bin")
    y_test = Tensor.load("cifar_tsY.bin")
    x_test.div_(255.0)

    if args.small:
        x_train = x_train.select([":5000"])
        y_train = y_train.select([":5000"])
        x_test = x_test.select([":1000"])
        y_test = y_test.select([":1000"])

    for i in range(args.epochs):
        eddl.fit(net, [x_train], [y_train], args.batch_size, 1)
        eddl.evaluate(net, [x_test], [y_test], bs=args.batch_size)
    print("All done")
Example #7
0
def main(args):
    eddl.download_cifar10()

    num_classes = 10

    in_ = eddl.Input([3, 32, 32])

    layer = in_

    layer = eddl.RandomCropScale(layer, [0.8, 1.0])
    layer = eddl.RandomFlip(layer, 1)
    layer = eddl.RandomCutout(layer, [0.1, 0.3], [0.1, 0.3])

    layer = eddl.MaxPool(Block3_2(layer, 64))
    layer = eddl.MaxPool(Block3_2(layer, 128))
    layer = eddl.MaxPool(Block1(Block3_2(layer, 256), 256))
    layer = eddl.MaxPool(Block1(Block3_2(layer, 512), 512))
    layer = eddl.MaxPool(Block1(Block3_2(layer, 512), 512))
    layer = eddl.Reshape(layer, [-1])
    layer = eddl.Activation(eddl.Dense(layer, 512), "relu")

    out = eddl.Softmax(eddl.Dense(layer, num_classes))
    net = eddl.Model([in_], [out])

    eddl.build(
        net,
        eddl.sgd(0.001, 0.9),
        ["soft_cross_entropy"],
        ["categorical_accuracy"],
        eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem)
    )

    eddl.setlogfile(net, "vgg16")
    eddl.summary(net)
    eddl.plot(net, "model.pdf")

    x_train = Tensor.load("cifar_trX.bin")
    y_train = Tensor.load("cifar_trY.bin")
    x_train.div_(255.0)

    x_test = Tensor.load("cifar_tsX.bin")
    y_test = Tensor.load("cifar_tsY.bin")
    x_test.div_(255.0)

    if args.small:
        x_train = x_train.select([":5000"])
        y_train = y_train.select([":5000"])
        x_test = x_test.select([":1000"])
        y_test = y_test.select([":1000"])

    for i in range(args.epochs):
        eddl.fit(net, [x_train], [y_train], args.batch_size, 1)
        eddl.evaluate(net, [x_test], [y_test], bs=args.batch_size)
    print("All done")
Example #8
0
def main(args):
    eddl.download_mnist()

    num_classes = 10

    in_ = eddl.Input([784])
    layer = in_
    layer = eddl.Reshape(layer, [1, 784])  # image as a 1D signal with depth 1
    layer = eddl.MaxPool1D(eddl.ReLu(eddl.Conv1D(layer, 16, [3], [1])), [4],
                           [4])
    layer = eddl.MaxPool1D(
        eddl.ReLu(eddl.Conv1D(layer, 32, [3], [1])),
        [4],
        [4],
    )
    layer = eddl.MaxPool1D(
        eddl.ReLu(eddl.Conv1D(layer, 64, [3], [1])),
        [4],
        [4],
    )
    layer = eddl.MaxPool1D(
        eddl.ReLu(eddl.Conv1D(layer, 64, [3], [1])),
        [4],
        [4],
    )
    layer = eddl.Reshape(layer, [-1])
    out = eddl.Softmax(eddl.Dense(layer, num_classes))
    net = eddl.Model([in_], [out])

    eddl.build(
        net, eddl.rmsprop(0.01), ["soft_cross_entropy"],
        ["categorical_accuracy"],
        eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem))

    eddl.summary(net)

    x_train = Tensor.load("mnist_trX.bin")
    y_train = Tensor.load("mnist_trY.bin")
    x_test = Tensor.load("mnist_tsX.bin")
    y_test = Tensor.load("mnist_tsY.bin")
    if args.small:
        x_train = x_train.select([":6000"])
        y_train = y_train.select([":6000"])
        x_test = x_test.select([":1000"])
        y_test = y_test.select([":1000"])
    x_train.div_(255.0)
    x_test.div_(255.0)

    eddl.fit(net, [x_train], [y_train], args.batch_size, args.epochs)
    eddl.evaluate(net, [x_test], [y_test], bs=args.batch_size)
    print("All done")
Example #9
0
def main(args):
    eddl.download_mnist()

    num_classes = 10

    in_ = eddl.Input([784])
    layer = in_
    layer = eddl.Activation(eddl.Dense(layer, 1024), "relu")
    layer = eddl.Activation(eddl.Dense(layer, 1024), "relu")
    layer = eddl.Activation(eddl.Dense(layer, 1024), "relu")
    out = eddl.Softmax(eddl.Dense(layer, num_classes))
    net = eddl.Model([in_], [out])

    acc = CategoricalAccuracy()
    net.build(
        eddl.sgd(0.01, 0.9),
        [eddl.getLoss("soft_cross_entropy")],
        [acc],
        eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem)
    )

    eddl.summary(net)
    eddl.plot(net, "model.pdf")

    x_train = Tensor.load("mnist_trX.bin")
    y_train = Tensor.load("mnist_trY.bin")
    x_test = Tensor.load("mnist_tsX.bin")
    # y_test = Tensor.load("mnist_tsY.bin")

    x_train.div_(255.0)
    x_test.div_(255.0)

    num_samples = x_train.shape[0]
    num_batches = num_samples // args.batch_size
    test_samples = x_test.shape[0]
    test_batches = test_samples // args.batch_size

    eddl.set_mode(net, TRMODE)

    for i in range(args.epochs):
        for j in range(num_batches):
            print("Epoch %d/%d (batch %d/%d)" %
                  (i + 1, args.epochs, j + 1, num_batches))
            indices = np.random.randint(0, num_samples, args.batch_size)
            eddl.train_batch(net, [x_train], [y_train], indices)
        for j in range(test_batches):
            print("Epoch %d/%d (batch %d/%d)" %
                  (i + 1, args.epochs, j + 1, test_batches))
            indices = np.random.randint(0, num_samples, args.batch_size)
            eddl.eval_batch(net, [x_train], [y_train], indices)
    print("All done")
Example #10
0
def main(args):
    eddl.download_mnist()

    num_classes = 10

    in_ = eddl.Input([28])

    layer = in_
    layer = eddl.LeakyReLu(eddl.Dense(layer, 32))
    layer = eddl.L2(eddl.LSTM(layer, 128), 0.001)
    ls = layer
    out = eddl.Softmax(eddl.Dense(layer, num_classes))
    net = eddl.Model([in_], [out])

    eddl.build(
        net, eddl.rmsprop(0.001), ["soft_cross_entropy"],
        ["categorical_accuracy"],
        eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem))

    eddl.summary(net)
    eddl.plot(net, "model.pdf")

    x_train = Tensor.load("mnist_trX.bin")
    y_train = Tensor.load("mnist_trY.bin")
    x_test = Tensor.load("mnist_tsX.bin")
    y_test = Tensor.load("mnist_tsY.bin")
    if args.small:
        x_train = x_train.select([":6000"])
        y_train = y_train.select([":6000"])
        x_test = x_test.select([":1000"])
        y_test = y_test.select([":1000"])

    x_train.reshape_([x_train.shape[0], 28, 28])
    x_test.reshape_([x_test.shape[0], 28, 28])
    y_train.reshape_([y_train.shape[0], 1, 10])
    y_test.reshape_([y_test.shape[0], 1, 10])

    x_train.div_(255.0)
    x_test.div_(255.0)

    for i in range(args.epochs):
        eddl.fit(net, [x_train], [y_train], args.batch_size, 1)
        eddl.evaluate(net, [x_test], [y_test], bs=args.batch_size)
        ls_in = eddl.getInput(ls)
        ls_in.info()
        ls_out = eddl.getOutput(ls)
        ls_out.info()
    print("All done")
Example #11
0
def main(args):
    eddl.download_mnist()

    num_classes = 10

    in_ = eddl.Input([784])

    layer = in_
    layer = eddl.Reshape(layer, [-1])
    layer = eddl.ReLu(eddl.Dense(layer, 1024))
    layer = eddl.BatchNormalization(layer, True)
    layer = eddl.ReLu(eddl.Dense(layer, 1024))
    layer = eddl.BatchNormalization(layer, True)
    layer = eddl.ReLu(eddl.Dense(layer, 1024))
    layer = eddl.BatchNormalization(layer, True)
    out = eddl.Softmax(eddl.Dense(layer, num_classes))
    net = eddl.Model([in_], [out])

    eddl.build(
        net,
        eddl.rmsprop(0.01),
        ["soft_cross_entropy"],
        ["categorical_accuracy"],
        eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem),
        True  # initialize weights to random values
    )

    eddl.summary(net)

    x_train = Tensor.load("mnist_trX.bin")
    y_train = Tensor.load("mnist_trY.bin")
    x_test = Tensor.load("mnist_tsX.bin")
    y_test = Tensor.load("mnist_tsY.bin")
    if args.small:
        x_train = x_train.select([":6000"])
        y_train = y_train.select([":6000"])
        x_test = x_test.select([":1000"])
        y_test = y_test.select([":1000"])

    x_train.div_(255.0)
    x_test.div_(255.0)

    eddl.fit(net, [x_train], [y_train], args.batch_size, args.epochs)
    eddl.evaluate(net, [x_test], [y_test], bs=args.batch_size)

    eddl.save_net_to_onnx_file(net, args.output)
    print("saved net to", args.output)
    print("All done")
Example #12
0
def main(args):
    if not os.path.isfile(args.input):
        raise RuntimeError("input file '%s' not found" % args.input)

    eddl.download_mnist()

    net = eddl.import_net_from_onnx_file(args.input)
    eddl.build(
        net,
        eddl.rmsprop(0.01),
        ["soft_cross_entropy"],
        ["categorical_accuracy"],
        eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem),
        False  # do not initialize weights to random values
    )

    net.resize(args.batch_size)  # resize manually since we don't use "fit"
    eddl.summary(net)

    x_test = Tensor.load("mnist_tsX.bin")
    x_test.div_(255.0)

    sys.stderr.write("forward...\n")
    eddl.forward(net, [x_test])
    sys.stderr.write("forward done\n")

    sys.stderr.write("lout: %r\n" % (net.lout, ))
    out = eddl.getOut(net)
    sys.stderr.write("getOut done\n")
    sys.stderr.write("out: %r\n" % (out, ))
    print("All done")
Example #13
0
def main(args):
    eddl.download_mnist()

    in_ = eddl.Input([784])

    layer = in_
    layer = eddl.Activation(eddl.Dense(layer, 256), "relu")
    layer = eddl.Activation(eddl.Dense(layer, 128), "relu")
    layer = eddl.Activation(eddl.Dense(layer, 64), "relu")
    layer = eddl.Activation(eddl.Dense(layer, 128), "relu")
    layer = eddl.Activation(eddl.Dense(layer, 256), "relu")
    out = eddl.Dense(layer, 784)

    net = eddl.Model([in_], [out])
    eddl.build(
        net, eddl.sgd(0.001, 0.9), ["mean_squared_error"],
        ["mean_squared_error"],
        eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem))

    eddl.summary(net)
    eddl.plot(net, "model.pdf")

    x_train = Tensor.load("mnist_trX.bin")
    if args.small:
        x_train = x_train.select([":6000"])
    x_train.div_(255.0)
    eddl.fit(net, [x_train], [x_train], args.batch_size, args.epochs)
    tout = eddl.predict(net, [x_train])
    tout[0].info()
    print("All done")
Example #14
0
def main(args):
    in_channels = 3
    in_height = 224
    in_width = 224
    print("Importing ONNX model")
    net = eddl.import_net_from_onnx_file(args.model_fn,
                                         [in_channels, in_height, in_width])
    # Add a softmax layer to get probabilities directly from the model
    input_ = net.lin[0]  # getLayer(net,"input_layer_name")
    output = net.lout[0]  # getLayer(net,"output_layer_name")
    new_output = eddl.Softmax(output)

    net = eddl.Model([input_], [new_output])
    eddl.build(
        net,
        eddl.adam(0.001),  # not used for prediction
        ["softmax_cross_entropy"],  # not used for prediction
        ["categorical_accuracy"],  # not used for prediction
        eddl.CS_GPU() if args.gpu else eddl.CS_CPU(),
        False  # Disable model initialization, we want to use the ONNX weights
    )
    eddl.summary(net)

    image = Tensor.load(args.img_fn)
    image_preprocessed = preprocess_input_resnet34(image,
                                                   [in_height, in_width])
    outputs = eddl.predict(net, [image_preprocessed])
    print("Reading class names...")
    with open(args.classes_fn, "rt") as f:
        class_names = [_.strip() for _ in f]
    print("Top 5 predictions:")
    print(eddl.get_topk_predictions(outputs[0], class_names, 5))
Example #15
0
def main(args):
    eddl.download_mnist()

    in_ = eddl.Input([784])

    layer = in_
    layer = eddl.Activation(eddl.Dense(layer, 256), "relu")
    layer = eddl.Activation(eddl.Dense(layer, 128), "relu")
    layer = eddl.Activation(eddl.Dense(layer, 64), "relu")
    layer = eddl.Activation(eddl.Dense(layer, 128), "relu")
    layer = eddl.Activation(eddl.Dense(layer, 256), "relu")
    out = eddl.Dense(layer, 784)

    net = eddl.Model([in_], [out])
    mse_loss = MSELoss()
    mse_metric = MSEMetric()
    net.build(
        eddl.sgd(0.001, 0.9), [mse_loss], [mse_metric],
        eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem))

    eddl.summary(net)
    eddl.plot(net, "model.pdf")

    x_train = Tensor.load("mnist_trX.bin")
    x_train.div_(255.0)
    eddl.fit(net, [x_train], [x_train], args.batch_size, args.epochs)
    print("All done")
Example #16
0
def main(args):
    eddl.download_imdb_2000()

    epochs = 2 if args.small else 10

    length = 250
    embdim = 33
    vocsize = 2000

    in_ = eddl.Input([1])  # 1 word
    layer = in_

    layer = eddl.RandomUniform(eddl.Embedding(layer, vocsize, 1, embdim),
                               -0.05, 0.05)
    layer = eddl.GRU(layer, 37)
    layer = eddl.ReLu(eddl.Dense(layer, 256))
    out = eddl.Sigmoid(eddl.Dense(layer, 1))
    net = eddl.Model([in_], [out])
    eddl.build(
        net, eddl.adam(0.001), ["cross_entropy"], ["binary_accuracy"],
        eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem))
    eddl.summary(net)

    x_train = Tensor.load("imdb_2000_trX.bin")
    y_train = Tensor.load("imdb_2000_trY.bin")
    x_test = Tensor.load("imdb_2000_tsX.bin")
    y_test = Tensor.load("imdb_2000_tsY.bin")

    #  batch x timesteps x input_dim
    x_train.reshape_([x_train.shape[0], length, 1])
    x_test.reshape_([x_test.shape[0], length, 1])
    y_train.reshape_([y_train.shape[0], 1, 1])
    y_test.reshape_([y_test.shape[0], 1, 1])

    if args.small:
        x_train = x_train.select([":64", ":", ":"])
        y_train = y_train.select([":64", ":", ":"])
        x_test = x_test.select([":64", ":", ":"])
        y_test = y_test.select([":64", ":", ":"])

    for i in range(epochs):
        eddl.fit(net, [x_train], [y_train], args.batch_size, 1)
        eddl.evaluate(net, [x_test], [y_test])
    print("All done")
Example #17
0
def main(args):
    eddl.download_mnist()

    num_classes = 10

    in_ = eddl.Input([784])

    layer = in_
    layer = eddl.BatchNormalization(
        eddl.Activation(eddl.L2(eddl.Dense(layer, 1024), 0.0001), "relu"), True
    )
    layer = eddl.BatchNormalization(
        eddl.Activation(eddl.L2(eddl.Dense(layer, 1024), 0.0001), "relu"), True
    )
    layer = eddl.BatchNormalization(
        eddl.Activation(eddl.L2(eddl.Dense(layer, 1024), 0.0001), "relu"), True
    )
    out = eddl.Softmax(eddl.Dense(layer, num_classes))
    net = eddl.Model([in_], [out])

    acc = CategoricalAccuracy()
    net.build(
        eddl.sgd(0.01, 0.9),
        [eddl.getLoss("soft_cross_entropy")],
        [acc],
        eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem)
    )

    eddl.summary(net)
    eddl.plot(net, "model.pdf")

    x_train = Tensor.load("mnist_trX.bin")
    y_train = Tensor.load("mnist_trY.bin")
    x_test = Tensor.load("mnist_tsX.bin")
    y_test = Tensor.load("mnist_tsY.bin")

    x_train.div_(255.0)
    x_test.div_(255.0)

    eddl.fit(net, [x_train], [y_train], args.batch_size, args.epochs)

    eddl.evaluate(net, [x_test], [y_test], bs=args.batch_size)
    print("All done")
Example #18
0
def main(args):
    eddl.download_mnist()

    num_classes = 10

    in_ = eddl.Input([784])

    layer = in_
    layer = eddl.ReLu(eddl.L2(eddl.Dense(layer, 1024), 0.0001))
    layer = eddl.ReLu(eddl.L1(eddl.Dense(layer, 1024), 0.0001))
    layer = eddl.ReLu(eddl.L1L2(eddl.Dense(layer, 1024), 0.00001, 0.0001))
    out = eddl.Softmax(eddl.Dense(layer, num_classes))
    net = eddl.Model([in_], [out])

    eddl.build(
        net,
        eddl.sgd(0.01, 0.9),
        ["soft_cross_entropy"],
        ["categorical_accuracy"],
        eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem)
    )

    eddl.summary(net)
    eddl.plot(net, "model.pdf")

    x_train = Tensor.load("mnist_trX.bin")
    y_train = Tensor.load("mnist_trY.bin")
    x_test = Tensor.load("mnist_tsX.bin")
    y_test = Tensor.load("mnist_tsY.bin")
    if args.small:
        x_train = x_train.select([":6000"])
        y_train = y_train.select([":6000"])
        x_test = x_test.select([":1000"])
        y_test = y_test.select([":1000"])

    x_train.div_(255.0)
    x_test.div_(255.0)

    eddl.fit(net, [x_train], [y_train], args.batch_size, args.epochs)
    eddl.evaluate(net, [x_test], [y_test], bs=args.batch_size)
    print("All done")
Example #19
0
def main(args):
    eddl.download_mnist()

    in_ = eddl.Input([784])
    target = eddl.Reshape(in_, [1, 28, 28])
    layer = in_
    layer = eddl.Reshape(layer, [1, 28, 28])
    layer = eddl.ReLu(eddl.Conv(layer, 8, [3, 3]))
    layer = eddl.ReLu(eddl.Conv(layer, 16, [3, 3]))
    layer = eddl.ReLu(eddl.Conv(layer, 8, [3, 3]))
    out = eddl.Sigmoid(eddl.Conv(layer, 1, [3, 3]))
    net = eddl.Model([in_], [])

    eddl.build(
        net,
        eddl.adam(0.001),
        [],
        [],
        eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem)
    )
    eddl.summary(net)

    x_train = Tensor.load("mnist_trX.bin")
    if args.small:
        x_train = x_train.select([":6000"])
    x_train.div_(255.0)

    mse = eddl.newloss(mse_loss, [out, target], "mse_loss")
    dicei = eddl.newloss(dice_loss_img, [out, target], "dice_loss_img")
    dicep = eddl.newloss(dice_loss_pixel, [out, target], "dice_loss_pixel")

    batch = Tensor([args.batch_size, 784])
    num_batches = x_train.shape[0] // args.batch_size
    for i in range(args.epochs):
        print("Epoch %d/%d (%d batches)" % (i + 1, args.epochs, num_batches))
        diceploss = 0.0
        diceiloss = 0.0
        mseloss = 0
        for j in range(num_batches):
            print("Batch %d " % j, end="", flush=True)
            eddl.next_batch([x_train], [batch])
            eddl.zeroGrads(net)
            eddl.forward(net, [batch])
            diceploss += eddl.compute_loss(dicep) / args.batch_size
            print("diceploss = %.6f " % (diceploss / (j + 1)), end="")
            diceiloss += eddl.compute_loss(dicei) / args.batch_size
            print("diceiloss = %.6f " % (diceiloss / (j + 1)), end="")
            mseloss += eddl.compute_loss(mse) / args.batch_size
            print("mseloss = %.6f\r" % (mseloss / (j + 1)), end="")
            eddl.optimize(dicep)
            eddl.update(net)
        print()
    print("All done")
Example #20
0
def main(args):
    eddl.download_cifar10()

    num_classes = 10

    in_ = eddl.Input([3, 32, 32])

    layer = in_

    layer = eddl.RandomHorizontalFlip(layer)
    layer = eddl.RandomCropScale(layer, [0.8, 1.0])
    layer = eddl.RandomCutout(layer, [0.1, 0.5], [0.1, 0.5])

    layer = eddl.MaxPool(eddl.ReLu(eddl.BatchNormalization(
        eddl.HeUniform(eddl.Conv(layer, 32, [3, 3], [1, 1], "same", False)),
        True)), [2, 2])
    layer = eddl.MaxPool(eddl.ReLu(eddl.BatchNormalization(
        eddl.HeUniform(eddl.Conv(layer, 64, [3, 3], [1, 1], "same", False)),
        True)), [2, 2])
    layer = eddl.MaxPool(eddl.ReLu(eddl.BatchNormalization(
        eddl.HeUniform(eddl.Conv(layer, 128, [3, 3], [1, 1], "same", False)),
        True)), [2, 2])
    layer = eddl.MaxPool(eddl.ReLu(eddl.BatchNormalization(
        eddl.HeUniform(eddl.Conv(layer, 256, [3, 3], [1, 1], "same", False)),
        True)), [2, 2])

    layer = eddl.Reshape(layer, [-1])
    layer = eddl.Activation(eddl.BatchNormalization(
        eddl.Dense(layer, 128), True
    ), "relu")
    out = eddl.Softmax(eddl.BatchNormalization(
        eddl.Dense(layer, num_classes), True
    ))
    net = eddl.Model([in_], [out])

    eddl.build(
        net,
        eddl.adam(0.001),
        ["softmax_cross_entropy"],
        ["categorical_accuracy"],
        eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem)
    )
    eddl.summary(net)
    eddl.plot(net, "model.pdf")

    x_train = Tensor.load("cifar_trX.bin")
    y_train = Tensor.load("cifar_trY.bin")
    x_train.div_(255.0)

    x_test = Tensor.load("cifar_tsX.bin")
    y_test = Tensor.load("cifar_tsY.bin")
    x_test.div_(255.0)

    if args.small:
        x_train = x_train.select([":5000"])
        y_train = y_train.select([":5000"])
        x_test = x_test.select([":1000"])
        y_test = y_test.select([":1000"])

    for i in range(args.epochs):
        eddl.fit(net, [x_train], [y_train], args.batch_size, 1)
        eddl.evaluate(net, [x_test], [y_test], bs=args.batch_size)
    eddl.setlr(net, [0.0001])
    for i in range(args.epochs):
        eddl.fit(net, [x_train], [y_train], args.batch_size, 1)
        eddl.evaluate(net, [x_test], [y_test], bs=args.batch_size)

    print("All done")
Example #21
0
def main(args):
    eddl.download_mnist()

    num_classes = 10

    in_ = eddl.Input([784])

    layer = in_
    layer = eddl.Reshape(layer, [-1])
    layer = eddl.ReLu(eddl.Dense(layer, 1024))
    layer = eddl.ReLu(eddl.Dense(layer, 1024))
    layer = eddl.ReLu(eddl.Dense(layer, 1024))
    out = eddl.Softmax(eddl.Dense(layer, num_classes))
    net = eddl.Model([in_], [out])

    eddl.build(
        net,
        eddl.rmsprop(0.01),
        ["soft_cross_entropy"],
        ["categorical_accuracy"],
        eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem),
        True  # initialize weights to random values
    )

    serialized_net = eddl.serialize_net_to_onnx_string(net, False)
    eddl.summary(net)

    x_train = Tensor.load("mnist_trX.bin")
    y_train = Tensor.load("mnist_trY.bin")
    x_test = Tensor.load("mnist_tsX.bin")
    y_test = Tensor.load("mnist_tsY.bin")
    if args.small:
        x_train = x_train.select([":6000"])
        y_train = y_train.select([":6000"])
        x_test = x_test.select([":1000"])
        y_test = y_test.select([":1000"])

    x_train.div_(255.0)
    x_test.div_(255.0)

    eddl.fit(net, [x_train], [y_train], args.batch_size, args.epochs)
    print("evaluating before import")
    eddl.evaluate(net, [x_test], [y_test], bs=args.batch_size)

    imported_net = eddl.import_net_from_onnx_string(serialized_net)

    eddl.build(
        imported_net,
        eddl.rmsprop(0.01),
        ["soft_cross_entropy"],
        ["categorical_accuracy"],
        eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem),
        False  # do not initialize weights to random values
    )

    eddl.summary(imported_net)
    print("net layers:", len(net.layers))
    print("imported_net layers:", len(imported_net.layers))

    print("evaluating imported net")
    eddl.evaluate(imported_net, [x_test], [y_test], bs=args.batch_size)
    print("All done")
Example #22
0
def main(args):
    eddl.download_eutrans()

    epochs = 1 if args.small else 5

    ilength = 30
    olength = 30
    invs = 687
    outvs = 514
    embedding = 64

    # Encoder
    in_ = eddl.Input([1])  # 1 word
    layer = in_
    lE = eddl.RandomUniform(
        eddl.Embedding(layer, invs, 1, embedding, True), -0.05, 0.05
    )
    enc = eddl.LSTM(lE, 128, True)
    cps = eddl.GetStates(enc)

    # Decoder
    ldin = eddl.Input([outvs])
    ld = eddl.ReduceArgMax(ldin, [0])
    ld = eddl.RandomUniform(
        eddl.Embedding(ld, outvs, 1, embedding), -0.05, 0.05
    )
    layer = eddl.LSTM([ld, cps], 128)
    out = eddl.Softmax(eddl.Dense(layer, outvs))
    eddl.setDecoder(ldin)

    net = eddl.Model([in_], [out])

    # Build model
    eddl.build(
        net,
        eddl.adam(0.01),
        ["softmax_cross_entropy"],
        ["accuracy"],
        eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem)
    )
    eddl.summary(net)

    # Load dataset
    x_train = Tensor.load("eutrans_trX.bin")
    y_train = Tensor.load("eutrans_trY.bin")
    y_train = Tensor.onehot(y_train, outvs)
    # batch x timesteps x input_dim
    x_train.reshape_([x_train.shape[0], ilength, 1])
    # batch x timesteps x ouput_dim
    y_train.reshape_([y_train.shape[0], olength, outvs])

    x_test = Tensor.load("eutrans_tsX.bin")
    y_test = Tensor.load("eutrans_tsY.bin")
    y_test = Tensor.onehot(y_test, outvs)
    # batch x timesteps x input_dim
    x_test.reshape_([x_test.shape[0], ilength, 1])
    # batch x timesteps x ouput_dim
    y_test.reshape_([y_test.shape[0], olength, outvs])

    if args.small:
        sel = [f":{3 * args.batch_size}", ":", ":"]
        x_train = x_train.select(sel)
        y_train = y_train.select(sel)
        x_test = x_test.select(sel)
        y_test = y_test.select(sel)

    # Train model
    ybatch = Tensor([args.batch_size, olength, outvs])
    eddl.next_batch([y_train], [ybatch])
    for i in range(epochs):
        eddl.fit(net, [x_train], [y_train], args.batch_size, 1)

    print("All done")
def main(args):
    eddl.download_flickr()

    epochs = 2 if args.small else 50

    olength = 20
    outvs = 2000
    embdim = 32

    # True: remove last layers and set new top = flatten
    # new input_size: [3, 256, 256] (from [224, 224, 3])
    net = eddl.download_resnet18(True, [3, 256, 256])
    lreshape = eddl.getLayer(net, "top")

    # create a new model from input output
    image_in = eddl.getLayer(net, "input")

    # Decoder
    ldecin = eddl.Input([outvs])
    ldec = eddl.ReduceArgMax(ldecin, [0])
    ldec = eddl.RandomUniform(eddl.Embedding(ldec, outvs, 1, embdim, True),
                              -0.05, 0.05)

    ldec = eddl.Concat([ldec, lreshape])
    layer = eddl.LSTM(ldec, 512, True)
    out = eddl.Softmax(eddl.Dense(layer, outvs))
    eddl.setDecoder(ldecin)
    net = eddl.Model([image_in], [out])

    # Build model
    eddl.build(
        net, eddl.adam(0.01), ["softmax_cross_entropy"], ["accuracy"],
        eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem))
    eddl.summary(net)

    # Load dataset
    x_train = Tensor.load("flickr_trX.bin", "bin")
    y_train = Tensor.load("flickr_trY.bin", "bin")
    if args.small:
        x_train = x_train.select([f"0:{2 * args.batch_size}", ":", ":", ":"])
        y_train = y_train.select([f"0:{2 * args.batch_size}", ":"])
    xtrain = Tensor.permute(x_train, [0, 3, 1, 2])
    y_train = Tensor.onehot(y_train, outvs)
    # batch x timesteps x input_dim
    y_train.reshape_([y_train.shape[0], olength, outvs])

    eddl.fit(net, [xtrain], [y_train], args.batch_size, epochs)
    eddl.save(net, "img2text.bin", "bin")

    print("\n === INFERENCE ===\n")

    # Get all the reshapes of the images. Only use the CNN
    timage = Tensor([x_train.shape[0], 512])  # images reshape
    cnn = eddl.Model([image_in], [lreshape])
    eddl.build(
        cnn,
        eddl.adam(0.001),  # not relevant
        ["mse"],  # not relevant
        ["mse"],  # not relevant
        eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem))
    eddl.summary(cnn)

    # forward images
    xbatch = Tensor([args.batch_size, 3, 256, 256])
    # numbatches = x_train.shape[0] / args.batch_size
    j = 0
    eddl.next_batch([x_train], [xbatch])
    eddl.forward(cnn, [xbatch])
    ybatch = eddl.getOutput(lreshape)
    sample = str(j * args.batch_size) + ":" + str((j + 1) * args.batch_size)
    timage.set_select([sample, ":"], ybatch)

    # Create Decoder non recurrent for n-best
    ldecin = eddl.Input([outvs])
    image = eddl.Input([512])
    lstate = eddl.States([2, 512])
    ldec = eddl.ReduceArgMax(ldecin, [0])
    ldec = eddl.RandomUniform(eddl.Embedding(ldec, outvs, 1, embdim), -0.05,
                              0.05)
    ldec = eddl.Concat([ldec, image])
    lstm = eddl.LSTM([ldec, lstate], 512, True)
    lstm.isrecurrent = False  # Important
    out = eddl.Softmax(eddl.Dense(lstm, outvs))
    decoder = eddl.Model([ldecin, image, lstate], [out])
    eddl.build(
        decoder,
        eddl.adam(0.001),  # not relevant
        ["softmax_cross_entropy"],  # not relevant
        ["accuracy"],  # not relevant
        eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem))
    eddl.summary(decoder)

    # Copy params from trained net
    eddl.copyParam(eddl.getLayer(net, "LSTM1"),
                   eddl.getLayer(decoder, "LSTM2"))
    eddl.copyParam(eddl.getLayer(net, "dense1"),
                   eddl.getLayer(decoder, "dense2"))
    eddl.copyParam(eddl.getLayer(net, "embedding1"),
                   eddl.getLayer(decoder, "embedding2"))

    # N-best for sample s
    s = 1 if args.small else 100  # sample 100
    # three input tensors with batch_size = 1 (one sentence)
    treshape = timage.select([str(s), ":"])
    text = y_train.select([str(s), ":", ":"])  # 1 x olength x outvs
    for j in range(olength):
        print(f"Word: {j}")
        word = None
        if j == 0:
            word = Tensor.zeros([1, outvs])
        else:
            word = text.select(["0", str(j - 1), ":"])
            word.reshape_([1, outvs])  # batch = 1
        treshape.reshape_([1, 512])  # batch = 1
        state = Tensor.zeros([1, 2, 512])  # batch = 1
        input_ = [word, treshape, state]
        eddl.forward(decoder, input_)
        # outword = eddl.getOutput(out)
        vstates = eddl.getStates(lstm)
        for i in range(len(vstates)):
            vstates[i].reshape_([1, 1, 512])
            state.set_select([":", str(i), ":"], vstates[i])

    print("All done")
Example #24
0
def main(args):
    eddl.download_mnist()

    num_classes = 10

    in_ = eddl.Input([784])
    layer = in_
    layer = eddl.ReLu(eddl.Dense(layer, 1024))
    layer = eddl.ReLu(eddl.Dense(layer, 1024))
    layer = eddl.ReLu(eddl.Dense(layer, 1024))
    out = eddl.Softmax(eddl.Dense(layer, num_classes))
    net = eddl.Model([in_], [out])

    eddl.build(
        net, eddl.sgd(0.001, 0.9), ["softmax_cross_entropy"],
        ["categorical_accuracy"],
        eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem))

    eddl.summary(net)
    eddl.plot(net, "model.pdf")
    eddl.setlogfile(net, "mnist")

    x_train = Tensor.load("mnist_trX.bin")
    y_train = Tensor.load("mnist_trY.bin")
    x_test = Tensor.load("mnist_tsX.bin")
    y_test = Tensor.load("mnist_tsY.bin")
    if args.small:
        x_train = x_train.select([":6000"])
        y_train = y_train.select([":6000"])
        x_test = x_test.select([":1000"])
        y_test = y_test.select([":1000"])

    x_train.div_(255.0)
    x_test.div_(255.0)

    s = x_train.shape
    num_batches = s[0] // args.batch_size
    for i in range(args.epochs):
        eddl.reset_loss(net)
        print("Epoch %d/%d (%d batches)" % (i + 1, args.epochs, num_batches))
        for j in range(num_batches):
            indices = np.random.randint(0, s[0], args.batch_size)
            eddl.train_batch(net, [x_train], [y_train], indices)

    losses1 = eddl.get_losses(net)
    metrics1 = eddl.get_metrics(net)
    for l, m in zip(losses1, metrics1):
        print("Loss: %.6f\tMetric: %.6f" % (l, m))

    s = x_test.shape
    num_batches = s[0] // args.batch_size
    for j in range(num_batches):
        indices = np.arange(j * args.batch_size,
                            j * args.batch_size + args.batch_size)
        eddl.eval_batch(net, [x_test], [y_test], indices)

    losses2 = eddl.get_losses(net)
    metrics2 = eddl.get_metrics(net)
    for l, m in zip(losses2, metrics2):
        print("Loss: %.6f\tMetric: %.6f" % (l, m))

    last_batch_size = s[0] % args.batch_size
    if last_batch_size:
        indices = np.arange(j * args.batch_size,
                            j * args.batch_size + args.batch_size)
        eddl.eval_batch(net, [x_test], [y_test], indices)

    losses3 = eddl.get_losses(net)
    metrics3 = eddl.get_metrics(net)
    for l, m in zip(losses3, metrics3):
        print("Loss: %.6f\tMetric: %.6f" % (l, m))

    print("All done")
    if (bn):
        l = eddl.BatchNormalization(l, 0.99, 0.001, True, "")
    l = eddl.ReLu(l)

out = eddl.Softmax(initializer(eddl.Dense(l, num_classes)))

net = eddl.Model([inp], [out])
eddl.plot(net, "model.pdf")

eddl.build(net, eddl.adam(0.00001), ["soft_cross_entropy"],
           ["categorical_accuracy"],
           eddl.CS_GPU() if gpu else eddl.CS_CPU())

eddl.summary(net)

x_train = Tensor.load("cifar_trX.bin")
y_train = Tensor.load("cifar_trY.bin")
x_train.div_(255)

x_test = Tensor.load("cifar_tsX.bin")
y_test = Tensor.load("cifar_tsY.bin")
x_test.div_(255)

from time import time
import numpy as np
tiempos = []
for i in range(epochs):
    s = time()
    print(i)
    res = eddl.fit(net, [x_train], [y_train], batch_size, 1)
    tiempos.append(time() - s)
Example #26
0
def main(args):

    freeze_epochs = 2
    unfreeze_epochs = 5
    num_classes = 10  # 10 labels in cifar10

    eddl.download_cifar10()
    eddl.download_model("resnet18.onnx", "re7jodd12srksd7")
    net = eddl.import_net_from_onnx_file("resnet18.onnx", [3, 32, 32], DEV_CPU)
    names = [_.name for _ in net.layers]

    # Remove dense output layer
    eddl.removeLayer(net, "resnetv15_dense0_fwd")
    # Get last layer to connect the new dense
    layer = eddl.getLayer(net, "flatten_170")
    out = eddl.Softmax(eddl.Dense(layer, num_classes, True, "new_dense"))
    # Get input layer
    in_ = eddl.getLayer(net, "data")
    # Create a new model
    net = eddl.Model([in_], [out])

    eddl.build(
        net,
        eddl.adam(0.0001),
        ["softmax_cross_entropy"],
        ["categorical_accuracy"],
        eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem),
        False  # do not initialize weights to random values
    )
    eddl.summary(net)
    # Force initialization of new layers
    eddl.initializeLayer(net, "new_dense")

    x_train = Tensor.load("cifar_trX.bin")
    y_train = Tensor.load("cifar_trY.bin")
    x_test = Tensor.load("cifar_tsX.bin")
    y_test = Tensor.load("cifar_tsY.bin")
    if args.small:
        sel = [f":{2 * args.batch_size}"]
        x_train = x_train.select(sel)
        y_train = y_train.select(sel)
        x_test = x_test.select(sel)
        y_test = y_test.select(sel)

    x_train.div_(255.0)
    x_test.div_(255.0)

    # Freeze pretrained weights
    for n in names:
        eddl.setTrainable(net, n, False)

    # Train new layers
    eddl.fit(net, [x_train], [y_train], args.batch_size, freeze_epochs)

    # Unfreeze weights
    for n in names:
        eddl.setTrainable(net, n, True)

    # Train all layers
    eddl.fit(net, [x_train], [y_train], args.batch_size, unfreeze_epochs)

    # Evaluate
    eddl.evaluate(net, [x_test], [y_test], args.batch_size)

    print("All done")
Example #27
0
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

import os
from urllib.request import urlretrieve

import numpy as np
from pyeddl.tensor import Tensor

# Convert array to tensor and save to "bin" format
a = np.arange(6).reshape([2, 3]).astype(np.float32)
print(a)
t = Tensor.fromarray(a)
t.save("./a.bin", "bin")
t1 = Tensor.load("a.bin", "bin")
a1 = t1.getdata()
print(a1)

print()

# Read numpy data and convert to tensors
FNAME = "mnist.npz"
LOC = "https://storage.googleapis.com/tensorflow/tf-keras-datasets"
if not os.path.exists(FNAME):
    fname, _ = urlretrieve("%s/%s" % (LOC, FNAME), FNAME)
    print("Downloaded", fname)
print("loading", FNAME)
with np.load(FNAME) as f:
    x_train, y_train = f['x_train'], f['y_train']
    x_test, y_test = f['x_test'], f['y_test']
Example #28
0
def main(args):
    eddl.download_drive()

    in_1 = eddl.Input([3, 584, 584])
    in_2 = eddl.Input([1, 584, 584])
    layer = eddl.Concat([in_1, in_2])

    layer = eddl.RandomCropScale(layer, [0.9, 1.0])
    layer = eddl.CenteredCrop(layer, [512, 512])
    img = eddl.Select(layer, ["0:3"])
    mask = eddl.Select(layer, ["3"])

    # DA net
    danet = eddl.Model([in_1, in_2], [])
    eddl.build(danet)
    if args.gpu:
        eddl.toGPU(danet, mem="low_mem")
    eddl.summary(danet)

    # SegNet
    in_ = eddl.Input([3, 512, 512])
    out = eddl.Sigmoid(UNetWithPadding(in_))
    segnet = eddl.Model([in_], [out])
    eddl.build(
        segnet,
        eddl.adam(0.00001),  # Optimizer
        ["mse"],  # Losses
        ["mse"],  # Metrics
        eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem)
    )
    eddl.summary(segnet)

    print("Reading training data")
    # x_train_f = Tensor.fromarray(np.load("drive_trX.npy").astype(np.float32))
    x_train_f = Tensor.load("drive_trX.bin")
    x_train = x_train_f.permute([0, 3, 1, 2])
    x_train.info()
    x_train.div_(255.0)

    print("Reading test data")
    # y_train = Tensor.fromarray(np.load("drive_trY.npy").astype(np.float32))
    y_train = Tensor.load("drive_trY.bin")
    y_train.info()
    y_train.reshape_([20, 1, 584, 584])
    y_train.div_(255.0)

    xbatch = Tensor([args.batch_size, 3, 584, 584])
    ybatch = Tensor([args.batch_size, 1, 584, 584])

    print("Starting training")
    for i in range(args.epochs):
        print("\nEpoch %d/%d" % (i + 1, args.epochs))
        eddl.reset_loss(segnet)
        for j in range(args.num_batches):
            eddl.next_batch([x_train, y_train], [xbatch, ybatch])
            # DA net
            eddl.forward(danet, [xbatch, ybatch])
            xbatch_da = eddl.getOutput(img)
            ybatch_da = eddl.getOutput(mask)
            # SegNet
            eddl.train_batch(segnet, [xbatch_da], [ybatch_da])
            eddl.print_loss(segnet, j)
            if i == args.epochs - 1:
                yout = eddl.getOutput(out).select(["0"])
                yout.save("./out_%d.jpg" % j)
            print()
    print("All done")