def _init_pyfeat(self): # set up pyfeat glue class object self._pyfeat = pyfeat.PyFeat( self.pop_size, self.gens, self.ml, self.classification, self.verbosity, self.max_stall, self.sel, self.surv, self.cross_rate, self.otype, self.functions, self.max_depth, self.max_dim, self.random_state, self.erc, self.obj, self.shuffle, self.split, self.fb, self.scorer, self.feature_names, self.backprop, self.iters, self.lr, self.batch_size, self.n_threads, self.hillclimb, self.logfile)
def _init_pyfeat(self): """set up pyfeat glue class object""" self._pyfeat = pyfeat.PyFeat( self.pop_size, self.gens, self.ml, self.classification, self.verbosity, self.max_stall, self.sel, self.surv, self.cross_rate, self.root_xo_rate, self.otype, self.functions, self.max_depth, self.max_dim, self.random_state, self.erc, self.obj, self.shuffle, self.split, self.fb, self.scorer, self.feature_names, self.backprop, self.iters, self.lr, self.batch_size, self.n_threads, self.hillclimb, self.logfile, self.max_time, self.use_batch, self.residual_xo, self.stagewise_xo, self.softmax_norm, self.print_pop, self.normalize)
def __init__(self, pop_size=100, gens=100, ml="LinearRidgeRegression", classification=False, verbosity=0, max_stall=0, sel="lexicase", surv="nsga2", cross_rate=0.5, otype='a', functions="", max_depth=3, max_dim=10, random_state=0, erc=False, obj="fitness,complexity", shuffle=False, split=0.75, fb=0.5, scorer='', feature_names="", backprop=False, iters=10, lr=0.1, batch_size=100, n_threads=0, hillclimb=False, logfile="Feat.log"): self.pop_size = pop_size self.gens = gens self.ml = ml.encode() if (isinstance(ml, str)) else ml self.classification = classification self.verbosity = verbosity self.max_stall = max_stall self.sel = sel.encode() if (isinstance(sel, str)) else sel self.surv = surv.encode() if (isinstance(surv, str)) else surv self.cross_rate = cross_rate self.otype = otype.encode() if (isinstance(otype, str)) else otype self.functions = functions.encode() if (isinstance(functions, str)) else functions self.max_depth = max_depth self.max_dim = max_dim self.random_state = int(random_state) self.erc = erc self.obj = obj.encode() if (isinstance(obj, str)) else obj self.shuffle = shuffle self.split = split self.fb = fb self.scorer = scorer.encode() if (isinstance(scorer, str)) else scorer self.feature_names = feature_names.encode() if isinstance( feature_names, str) else feature_names self.backprop = bool(backprop) self.iters = int(iters) self.lr = float(lr) if batch_size: self.batch_size = int(batch_size) else: print('batch_size is None for some reason') self.batch_size = 100 self.n_threads = int(n_threads) self.hillclimb = bool(hillclimb) self.logfile = logfile.encode() if isinstance(logfile, str) else logfile # if self.verbosity>0: print('self.__dict__: ', self.__dict__) self._pyfeat = pyfeat.PyFeat( self.pop_size, self.gens, self.ml, self.classification, self.verbosity, self.max_stall, self.sel, self.surv, self.cross_rate, self.otype, self.functions, self.max_depth, self.max_dim, self.random_state, self.erc, self.obj, self.shuffle, self.split, self.fb, self.scorer, self.feature_names, self.backprop, self.iters, self.lr, self.batch_size, self.n_threads, self.hillclimb, self.logfile)