Example #1
0
import numpy as np
from matplotlib import cm
from netCDF4 import Dataset
meshpath='/gfs1/work/hbkqtang/input/CORE2_final/'
mesh=pf.load_mesh(meshpath,usepickle=False)
m = Basemap(projection='robin',lon_0=0, resolution='c')
x, y = m(mesh.x2, mesh.y2)

# Read the observation data
fl_obs=Dataset('/gfs1/work/hbkqtang/temporary/obs_SST.nc')

# Read the model forecast from the free run
fl_f=Dataset('/gfs1/work/hbkqtang/output/cpl_work_2014_3/thetao_fesom_20140101.nc')

for i in range(730,1096):
  level_data_obs, elem_no_nan = pf.get_data(fl_obs.variables['sst'][i-730,:],mesh,000)
  level_data_f, elem_no_nan_dummy = pf.get_data(fl_f.variables['thetao'][i,:],mesh,000)

  # Calculate the differnece 
  level_data=level_data_obs-level_data_f

  # Plot the figure
  fig=plt.figure(figsize=(10,7))
  m.drawmapboundary(fill_color='0.9')
  m.drawcoastlines()

  levels = np.arange(-10., 10., 0.05)
  plt.tricontourf(x, y, elem_no_nan[::], level_data, levels = levels, cmap=cm.RdBu_r, extend='both')
  cbar = plt.colorbar(orientation='horizontal', pad=0.03);
  plt.title('SST_obs-fore'+str(i+1))
  plt.tight_layout()
Example #2
0
mesh = pf.load_mesh(meshpath, usepickle=False)

dataset = Dataset(
    '/home/h/hbkqtang/fesom_echam6_oasis3-mct/run_scripts/hlrn3/work/cpl_work_8sst_testcase/fesom.2016.oce.daexp1.nc'
)
temp_std = dataset.variables['temp_ini'][0:1, 0:126859]
print(temp_std.min())
print(temp_std.max())
temp_std_mean = np.mean(temp_std)
temp_std_std = np.sqrt(temp_std_mean)
print(temp_std_std)

m = Basemap(projection='robin', lon_0=0, resolution='c')
x, y = m(mesh.x2, mesh.y2)

level_data, elem_no_nan = pf.get_data(dataset.variables['temp_ini'][0, :],
                                      mesh, 000)
fig = plt.figure(figsize=(10, 7))
m.drawmapboundary(fill_color='0.9')
m.drawcoastlines()

levels = np.arange(0., 2., .05)
plt.tricontourf(x,
                y,
                elem_no_nan[::],
                level_data,
                levels=levels,
                cmap=cm.Spectral_r,
                extend='both')
cbar = plt.colorbar(orientation='horizontal', pad=0.03)
plt.title('SST_var_model_2')
plt.tight_layout()
Example #3
0
def showfile(ifile, variable, depth, meshpath, box, res, influence, timestep,
             levels, quiet, ofile, mapproj, abg, clim, cmap, interp, ptype, k):
    '''
    meshpath - Path to the folder with FESOM1.4 mesh files.

    ifile    - Path to FESOM1.4 netCDF file.

    variable - The netCDF variable to be plotted.
    '''
    if not quiet:
        click.secho('Mesh: {}'.format(meshpath))
        click.secho('File: {}'.format(ifile))
        click.secho('Variable: {}'.format(variable), fg='red')
        click.secho('Depth: {}'.format(depth), fg='red')
        click.secho('BOX: {}'.format(box))
        click.secho('Resolution: {}'.format(res))
        click.secho('Influence raduis: {} meters'.format(influence), fg='red')
        click.secho('Timestep: {}'.format(timestep))
        if levels:
            click.secho('Levels: {}'.format(levels), fg='red')
        else:
            click.secho('Levels: auto', fg='red')

    if cmap:
        if cmap in cmo.cmapnames:
            colormap = cmo.cmap_d[cmap]
        elif cmap in plt.cm.datad:
            colormap = plt.get_cmap(cmap)
        else:
            raise ValueError(
                'Get unrecognised name for the colormap `{}`. Colormaps should be from standard matplotlib set of from cmocean package.'
                .format(cmap))
    else:
        if clim:
            colormap = cmo.cmap_d['balance']
        else:
            colormap = plt.get_cmap('Spectral_r')

    sstep = timestep
    radius_of_influence = influence

    left, right, down, up = box
    lonNumber, latNumber = res

    mesh = pf.load_mesh(meshpath, abg=abg, usepickle=False, usejoblib=True)
    flf = Dataset(ifile)
    lonreg = np.linspace(left, right, lonNumber)
    latreg = np.linspace(down, up, latNumber)
    lonreg2, latreg2 = np.meshgrid(lonreg, latreg)

    dind = (abs(mesh.zlevs - depth)).argmin()
    realdepth = mesh.zlevs[dind]

    level_data, nnn = pf.get_data(flf.variables[variable][sstep], mesh,
                                  realdepth)
    if interp == 'nn':
        ofesom = pf.fesom2regular(level_data,
                                  mesh,
                                  lonreg2,
                                  latreg2,
                                  radius_of_influence=radius_of_influence)
    elif interp == 'idist':
        ofesom = pf.fesom2regular(level_data,
                                  mesh,
                                  lonreg2,
                                  latreg2,
                                  radius_of_influence=radius_of_influence,
                                  how='idist',
                                  k=k)
    elif interp == 'linear':
        points = np.vstack((mesh.x2, mesh.y2)).T
        qh = qhull.Delaunay(points)
        ofesom = LinearNDInterpolator(qh, level_data)((lonreg2, latreg2))

    elif interp == 'cubic':
        points = np.vstack((mesh.x2, mesh.y2)).T
        qh = qhull.Delaunay(points)
        ofesom = CloughTocher2DInterpolator(qh, level_data)((lonreg2, latreg2))

    if clim:
        if variable == 'temp':
            climvar = 'T'
        elif variable == 'salt':
            climvar = 'S'
        else:
            raise ValueError(
                'You have selected --clim/-c option, but variable `{}` is not in climatology. Acceptable values are `temp` and `salt` only.'
                .format(variable))
        #os.path.join(os.path.dirname(__file__), "../")
        pathToClim = os.path.join(os.path.dirname(os.path.abspath(__file__)),
                                  "../data/")
        print(pathToClim)
        w = pf.climatology(pathToClim, clim)
        xx, yy, oclim = pf.clim2regular(
            w,
            climvar,
            lonreg2,
            latreg2,
            levels=[realdepth],
            radius_of_influence=radius_of_influence)
        oclim = oclim[0, :, :]
        data = ofesom - oclim
    else:
        data = ofesom

    if mapproj == 'merc':
        ax = plt.subplot(111, projection=ccrs.Mercator())
    elif mapproj == 'pc':
        ax = plt.subplot(111, projection=ccrs.PlateCarree())
    elif mapproj == 'np':
        ax = plt.subplot(111, projection=ccrs.NorthPolarStereo())
    elif mapproj == 'sp':
        ax = plt.subplot(111, projection=ccrs.SouthPolarStereo())
    elif mapproj == 'rob':
        ax = plt.subplot(111, projection=ccrs.Robinson())

    ax.set_extent([left, right, down, up], crs=ccrs.PlateCarree())

    if levels:
        mmin, mmax, nnum = levels
        nnum = int(nnum)
    else:
        mmin = np.nanmin(data)
        mmax = np.nanmax(data)
        nnum = 40

    data_levels = np.linspace(mmin, mmax, nnum)
    if ptype == 'cf':
        mm = ax.contourf(lonreg,\
                     latreg,\
                     data,
                     levels = data_levels,
                     transform=ccrs.PlateCarree(),
                     cmap=colormap,
                    extend='both')
    elif ptype == 'pcm':
        data_cyc, lon_cyc = add_cyclic_point(data, coord=lonreg)
        mm = ax.pcolormesh(lon_cyc,\
                         latreg,\
                         data_cyc,
                         vmin = mmin,
                         vmax = mmax,
                         transform=ccrs.PlateCarree(),
                         cmap=colormap,
                        )
    else:
        raise ValueError('Inknown plot type {}'.format(ptype))

    ax.coastlines(resolution='50m', lw=0.5)
    ax.add_feature(
        cfeature.GSHHSFeature(levels=[1], scale='low', facecolor='lightgray'))
    cb = plt.colorbar(mm, orientation='horizontal', pad=0.03)
    cb.set_label(flf.variables[variable].units)
    plt.title('{} at {}m.'.format(variable, realdepth))
    plt.tight_layout()
    if ofile:
        plt.savefig(ofile, dpi=100)
    else:
        plt.show()
Example #4
0
sys.path.append("/home/h/hbkqtang/pyfesom.git/trunk/")
import pyfesom as pf
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap
from matplotlib.colors import LinearSegmentedColormap
import numpy as np
from matplotlib import cm
from netCDF4 import Dataset
meshpath = '/gfs1/work/hbkqtang/input/CORE2_final/'
mesh = pf.load_mesh(meshpath, usepickle=False)
fl = Dataset('/gfs1/work/hbkqtang/temporary/obs_SST.nc')
m = Basemap(projection='robin', lon_0=0, resolution='c')
x, y = m(mesh.x2, mesh.y2)

for i in range(0, 365):
    level_data, elem_no_nan = pf.get_data(fl.variables['sst'][i, :], mesh, 000)
    fig = plt.figure(figsize=(10, 7))
    m.drawmapboundary(fill_color='0.9')
    m.drawcoastlines()

    levels = np.arange(-5., 35., .1)
    plt.tricontourf(x,
                    y,
                    elem_no_nan[::],
                    level_data,
                    levels=levels,
                    cmap=cm.Spectral_r,
                    extend='both')
    cbar = plt.colorbar(orientation='horizontal', pad=0.03)
    cbar.set_label("SST")
    plt.title('SST_obs_' + str(i + 1))
Example #5
0
def showo(meshpath, ifile, variable, depth, box, timestep, minmax, mapproj,
          quiet, ofile):
    '''
    meshpath - Path to the folder with FESOM1.4 mesh files.

    ifile    - Path to FESOM1.4 netCDF file.

    variable - The netCDF variable to be plotted.
    '''
    if not quiet:
        click.secho('Mesh: {}'.format(meshpath))
        click.secho('File: {}'.format(ifile))
        click.secho('Variable: {}'.format(variable), fg='red')
        click.secho('Depth: {}'.format(depth), fg='red')
        click.secho('BOX: {}'.format(box))
        click.secho('Timestep: {}'.format(timestep))
        if minmax:
            click.secho('Min/max: {}'.format(minmax), fg='red')
        else:
            click.secho('Min/max: auto', fg='red')

    mesh = pf.load_mesh(meshpath)
    flf = Dataset(ifile)
    left, right, down, up = box

    elem_nonan, no_nan_tri = pf.cut_region(mesh, [left, right, down, up], 0)
    if variable == 'topo':
        level_data = mesh.topo
    else:
        level_data, nnn = pf.get_data(flf.variables[variable][timestep, :],
                                      mesh, depth)

    if minmax:
        mmin, mmax = minmax
    else:
        mmin = level_data[elem_nonan].min()
        mmax = level_data[elem_nonan].max()

    plt.figure(figsize=(10, 10))
    if mapproj == 'merc':
        ax = plt.subplot(111, projection=ccrs.Mercator())
    elif mapproj == 'pc':
        ax = plt.subplot(111, projection=ccrs.PlateCarree())
    elif mapproj == 'np':
        ax = plt.subplot(111, projection=ccrs.NorthPolarStereo())
    elif mapproj == 'sp':
        ax = plt.subplot(111, projection=ccrs.SouthPolarStereo())
    elif mapproj == 'rob':
        ax = plt.subplot(111, projection=ccrs.Robinson())

    ax.set_extent(box, crs=ccrs.PlateCarree())
    mm = ax.tripcolor(mesh.x2,
                      mesh.y2,
                      elem_nonan,
                      level_data,
                      transform=ccrs.PlateCarree(),
                      edgecolors='k',
                      cmap=cm.Spectral_r,
                      vmin=mmin,
                      vmax=mmax)
    ax.coastlines(lw=0.5, resolution='10m')
    plt.colorbar(
        mm,
        orientation='horizontal',
        pad=0.03,
    )
    plt.title('{} at {}'.format(variable, depth), size=20)
    if ofile:
        plt.savefig(ofile, dpi=200)
    else:
        plt.show()
Example #6
0
import pyfesom as pf
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap
from matplotlib.colors import LinearSegmentedColormap
import numpy as np
from matplotlib import cm
from netCDF4 import Dataset
meshpath='/gfs1/work/hbkqtang/input/CORE2_final/'
mesh=pf.load_mesh(meshpath,usepickle=False)
fl=Dataset('/gfs1/work/hbkqtang/AWI-CM-PDAF/cpl_work_23profile_temp_r106_08/fesom.2016.oce.daexp1.nc')
m = Basemap(projection='robin',lon_0=0, resolution='c')
x, y = m(mesh.x2, mesh.y2)

depth=100
for i in range(3,4):
    level_data, elem_no_nan = pf.get_data(fl.variables['salt_f'][i,:],mesh,depth)
    fig=plt.figure(figsize=(10,7))
    m.drawmapboundary(fill_color='0.9')
    m.drawcoastlines()

    levels = np.arange(31., 38., .01)
    plt.tricontourf(x, y, elem_no_nan[::], level_data, levels = levels, cmap=cm.Spectral_r, extend='both')
    cbar = plt.colorbar(orientation='horizontal', pad=0.03);
    #plt.title('SST_ini_'+str(i+1))
    #plt.title('temp_50_'+str(i+1))
#read observation file
en4=Dataset("/gfs1/work/hbkqtang/temporary/EN.4.2.1.f.profiles.g10.201601.nc",format="NETCDF3_64BIT_OFFSET")
# find out the number of profiles for one day
n_prof=en4.dimensions['N_PROF']
n_prof=n_prof.size
lon=en4.variables['LONGITUDE'][:]