Example #1
0
 def set_state(self, state_dict):
     pyflex.set_positions(state_dict['particle_pos'])
     pyflex.set_velocities(state_dict['particle_vel'])
     pyflex.set_shape_states(state_dict['shape_pos'])
     pyflex.set_phases(state_dict['phase'])
     self.camera_params = copy.deepcopy(state_dict['camera_params'])
     self.update_camera(self.camera_name)
Example #2
0
 def set_state(self, state_dic):
     '''
     set the postion, velocity of flex particles, and postions of flex shapes.
     '''
     self.box_params = state_dic['box_params']
     pyflex.set_positions(state_dic["particle_pos"])
     pyflex.set_velocities(state_dic["particle_vel"])
     pyflex.set_shape_states(state_dic["shape_pos"])
     self.box_x = state_dic['box_x']
     self.box_states = state_dic['box_states']
     for _ in range(5):
         pyflex.step()
Example #3
0
 def set_state(self, state_dic):
     '''
     set the postion, velocity of flex particles, and postions of flex shapes.
     '''
     pyflex.set_positions(state_dic["particle_pos"])
     pyflex.set_velocities(state_dic["particle_vel"])
     pyflex.set_shape_states(state_dic["shape_pos"])
     self.glass_x = state_dic['glass_x']
     self.glass_y = state_dic['glass_y']
     self.glass_rotation = state_dic['glass_rotation']
     self.glass_states = state_dic['glass_states']
     self.poured_glass_states = state_dic['poured_glass_states']
     for _ in range(5):
         pyflex.step()
Example #4
0
    def generate_env_variation(self, num_variations=2, vary_cloth_size=True):
        """ Generate initial states. Note: This will also change the current states! """
        max_wait_step = 1000  # Maximum number of steps waiting for the cloth to stablize
        stable_vel_threshold = 0.2  # Cloth stable when all particles' vel are smaller than this
        generated_configs, generated_states = [], []
        default_config = self.get_default_config()
        default_config['flip_mesh'] = 1

        for i in range(num_variations):
            config = deepcopy(default_config)
            self.update_camera(config['camera_name'],
                               config['camera_params'][config['camera_name']])
            if vary_cloth_size:
                cloth_dimx, cloth_dimy = self._sample_cloth_size()
                config['ClothSize'] = [cloth_dimx, cloth_dimy]
            else:
                cloth_dimx, cloth_dimy = config['ClothSize']

            self.set_scene(config)
            self.action_tool.reset([0., -1., 0.])
            pos = pyflex.get_positions().reshape(-1, 4)
            pos[:, :3] -= np.mean(pos, axis=0)[:3]
            if self.action_mode in ['sawyer', 'franka'
                                    ]:  # Take care of the table in robot case
                pos[:, 1] = 0.57
            else:
                pos[:, 1] = 0.005
            pos[:, 3] = 1
            pyflex.set_positions(pos.flatten())
            pyflex.set_velocities(np.zeros_like(pos))
            for _ in range(5):  # In case if the cloth starts in the air
                pyflex.step()

            for wait_i in range(max_wait_step):
                pyflex.step()
                curr_vel = pyflex.get_velocities()
                if np.alltrue(np.abs(curr_vel) < stable_vel_threshold):
                    break

            center_object()
            angle = (np.random.random() - 0.5) * np.pi / 2
            self.rotate_particles(angle)

            generated_configs.append(deepcopy(config))
            print('config {}: {}'.format(i, config['camera_params']))
            generated_states.append(deepcopy(self.get_state()))

        return generated_configs, generated_states
Example #5
0
    def generate_env_variation(self, num_variations=1, vary_cloth_size=True):
        """ Generate initial states. Note: This will also change the current states! """
        max_wait_step = 300  # Maximum number of steps waiting for the cloth to stablize
        stable_vel_threshold = 0.01  # Cloth stable when all particles' vel are smaller than this
        generated_configs, generated_states = [], []
        default_config = self.get_default_config()

        for i in range(num_variations):
            config = deepcopy(default_config)
            self.update_camera(config['camera_name'],
                               config['camera_params'][config['camera_name']])
            if vary_cloth_size:
                cloth_dimx, cloth_dimy = self._sample_cloth_size()
                config['ClothSize'] = [cloth_dimx, cloth_dimy]
            else:
                cloth_dimx, cloth_dimy = config['ClothSize']
            self.set_scene(config)
            self.action_tool.reset([0., -1., 0.])
            pos = pyflex.get_positions().reshape(-1, 4)
            pos[:, :3] -= np.mean(pos, axis=0)[:3]
            if self.action_mode in ['sawyer', 'franka'
                                    ]:  # Take care of the table in robot case
                pos[:, 1] = 0.57
            else:
                pos[:, 1] = 0.005
            pos[:, 3] = 1
            pyflex.set_positions(pos.flatten())
            pyflex.set_velocities(np.zeros_like(pos))
            pyflex.step()

            num_particle = cloth_dimx * cloth_dimy
            pickpoint = random.randint(0, num_particle - 1)
            curr_pos = pyflex.get_positions()
            original_inv_mass = curr_pos[pickpoint * 4 + 3]
            curr_pos[
                pickpoint * 4 +
                3] = 0  # Set the mass of the pickup point to infinity so that it generates enough force to the rest of the cloth
            pickpoint_pos = curr_pos[pickpoint * 4:pickpoint * 4 + 3].copy(
            )  # Pos of the pickup point is fixed to this point
            pickpoint_pos[1] += np.random.random(1) * 0.5 + 0.5
            pyflex.set_positions(curr_pos)

            # Pick up the cloth and wait to stablize
            for j in range(0, max_wait_step):
                curr_pos = pyflex.get_positions()
                curr_vel = pyflex.get_velocities()
                curr_pos[pickpoint * 4:pickpoint * 4 + 3] = pickpoint_pos
                curr_vel[pickpoint * 3:pickpoint * 3 + 3] = [0, 0, 0]
                pyflex.set_positions(curr_pos)
                pyflex.set_velocities(curr_vel)
                pyflex.step()
                if np.alltrue(
                        np.abs(curr_vel) < stable_vel_threshold) and j > 5:
                    break

            # Drop the cloth and wait to stablize
            curr_pos = pyflex.get_positions()
            curr_pos[pickpoint * 4 + 3] = original_inv_mass
            pyflex.set_positions(curr_pos)
            for _ in range(max_wait_step):
                pyflex.step()
                curr_vel = pyflex.get_velocities()
                if np.alltrue(curr_vel < stable_vel_threshold):
                    break

            center_object()

            if self.action_mode == 'sphere' or self.action_mode.startswith(
                    'picker'):
                curr_pos = pyflex.get_positions()
                self.action_tool.reset(curr_pos[pickpoint * 4:pickpoint * 4 +
                                                3] + [0., 0.2, 0.])
            generated_configs.append(deepcopy(config))
            generated_states.append(deepcopy(self.get_state()))
            self.current_config = config  # Needed in _set_to_flatten function
            generated_configs[-1]['flatten_area'] = self._set_to_flatten(
            )  # Record the maximum flatten area

            print('config {}: camera params {}, flatten area: {}'.format(
                i, config['camera_params'],
                generated_configs[-1]['flatten_area']))

        return generated_configs, generated_states