def run_day_of_month_analysis(self, strat): from pythalesians.economics.seasonality.seasonality import Seasonality from pythalesians.timeseries.calcs.timeseriescalcs import TimeSeriesCalcs tsc = TimeSeriesCalcs() seas = Seasonality() strat.construct_strategy() pnl = strat.get_strategy_pnl() # get seasonality by day of the month pnl = pnl.resample('B').mean() rets = tsc.calculate_returns(pnl) bus_day = seas.bus_day_of_month_seasonality(rets, add_average = True) # get seasonality by month pnl = pnl.resample('BM').mean() rets = tsc.calculate_returns(pnl) month = seas.monthly_seasonality(rets) self.logger.info("About to plot seasonality...") gp = GraphProperties() pf = PlotFactory() # Plotting spot over day of month/month of year gp.color = 'Blues' gp.scale_factor = self.SCALE_FACTOR gp.file_output = self.DUMP_PATH + strat.FINAL_STRATEGY + ' seasonality day of month.png' gp.html_file_output = self.DUMP_PATH + strat.FINAL_STRATEGY + ' seasonality day of month.html' gp.title = strat.FINAL_STRATEGY + ' day of month seasonality' gp.display_legend = False gp.color_2_series = [bus_day.columns[-1]] gp.color_2 = ['red'] # red, pink gp.linewidth_2 = 4 gp.linewidth_2_series = [bus_day.columns[-1]] gp.y_axis_2_series = [bus_day.columns[-1]] pf.plot_line_graph(bus_day, adapter = self.DEFAULT_PLOT_ENGINE, gp = gp) gp = GraphProperties() gp.scale_factor = self.SCALE_FACTOR gp.file_output = self.DUMP_PATH + strat.FINAL_STRATEGY + ' seasonality month of year.png' gp.html_file_output = self.DUMP_PATH + strat.FINAL_STRATEGY + ' seasonality month of year.html' gp.title = strat.FINAL_STRATEGY + ' month of year seasonality' pf.plot_line_graph(month, adapter = self.DEFAULT_PLOT_ENGINE, gp = gp) return month
def run_arbitrary_sensitivity(self, strat, parameter_list = None, parameter_names = None, pretty_portfolio_names = None, parameter_type = None): asset_df, spot_df, spot_df2, basket_dict = strat.fill_assets() port_list = None for i in range(0, len(parameter_list)): br = strat.fill_backtest_request() current_parameter = parameter_list[i] # for calculating P&L for k in current_parameter.keys(): setattr(br, k, current_parameter[k]) strat.br = br # for calculating signals signal_df = strat.construct_signal(spot_df, spot_df2, br.tech_params) cash_backtest = CashBacktest() self.logger.info("Calculating... " + pretty_portfolio_names[i]) cash_backtest.calculate_trading_PnL(br, asset_df, signal_df) stats = str(cash_backtest.get_portfolio_pnl_desc()[0]) port = cash_backtest.get_cumportfolio().resample('B') port.columns = [pretty_portfolio_names[i] + ' ' + stats] if port_list is None: port_list = port else: port_list = port_list.join(port) pf = PlotFactory() gp = GraphProperties() gp.color = 'Blues' gp.resample = 'B' gp.file_output = self.DUMP_PATH + strat.FINAL_STRATEGY + ' ' + parameter_type + '.png' gp.scale_factor = self.scale_factor gp.title = strat.FINAL_STRATEGY + ' ' + parameter_type pf.plot_line_graph(port_list, adapter = 'pythalesians', gp = gp)
def run_arbitrary_sensitivity(self, strat, parameter_list=None, parameter_names=None, pretty_portfolio_names=None, parameter_type=None): asset_df, spot_df, spot_df2, basket_dict = strat.fill_assets() port_list = None tsd_list = [] for i in range(0, len(parameter_list)): br = strat.fill_backtest_request() current_parameter = parameter_list[i] # for calculating P&L for k in current_parameter.keys(): setattr(br, k, current_parameter[k]) strat.br = br # for calculating signals signal_df = strat.construct_signal(spot_df, spot_df2, br.tech_params, br) cash_backtest = CashBacktest() self.logger.info("Calculating... " + pretty_portfolio_names[i]) cash_backtest.calculate_trading_PnL(br, asset_df, signal_df) tsd_list.append(cash_backtest.get_portfolio_pnl_tsd()) stats = str(cash_backtest.get_portfolio_pnl_desc()[0]) port = cash_backtest.get_cumportfolio().resample('B') port.columns = [pretty_portfolio_names[i] + ' ' + stats] if port_list is None: port_list = port else: port_list = port_list.join(port) # reset the parameters of the strategy strat.br = strat.fill_backtest_request() pf = PlotFactory() gp = GraphProperties() ir = [t.inforatio()[0] for t in tsd_list] # gp.color = 'Blues' # plot all the variations gp.resample = 'B' gp.file_output = self.DUMP_PATH + strat.FINAL_STRATEGY + ' ' + parameter_type + '.png' gp.scale_factor = self.scale_factor gp.title = strat.FINAL_STRATEGY + ' ' + parameter_type pf.plot_line_graph(port_list, adapter='pythalesians', gp=gp) # plot all the IR in a bar chart form (can be easier to read!) gp = GraphProperties() gp.file_output = self.DUMP_PATH + strat.FINAL_STRATEGY + ' ' + parameter_type + ' IR.png' gp.scale_factor = self.scale_factor gp.title = strat.FINAL_STRATEGY + ' ' + parameter_type summary = pandas.DataFrame(index=pretty_portfolio_names, data=ir, columns=['IR']) pf.plot_bar_graph(summary, adapter='pythalesians', gp=gp) return port_list
def run_arbitrary_sensitivity(self, strat, parameter_list = None, parameter_names = None, pretty_portfolio_names = None, parameter_type = None): asset_df, spot_df, spot_df2, basket_dict = strat.fill_assets() port_list = None tsd_list = [] for i in range(0, len(parameter_list)): br = strat.fill_backtest_request() current_parameter = parameter_list[i] # for calculating P&L for k in current_parameter.keys(): setattr(br, k, current_parameter[k]) strat.br = br # for calculating signals signal_df = strat.construct_signal(spot_df, spot_df2, br.tech_params, br) cash_backtest = CashBacktest() self.logger.info("Calculating... " + pretty_portfolio_names[i]) cash_backtest.calculate_trading_PnL(br, asset_df, signal_df) tsd_list.append(cash_backtest.get_portfolio_pnl_tsd()) stats = str(cash_backtest.get_portfolio_pnl_desc()[0]) port = cash_backtest.get_cumportfolio().resample('B').mean() port.columns = [pretty_portfolio_names[i] + ' ' + stats] if port_list is None: port_list = port else: port_list = port_list.join(port) # reset the parameters of the strategy strat.br = strat.fill_backtest_request() pf = PlotFactory() gp = GraphProperties() ir = [t.inforatio()[0] for t in tsd_list] # gp.color = 'Blues' # plot all the variations gp.resample = 'B' gp.file_output = self.DUMP_PATH + strat.FINAL_STRATEGY + ' ' + parameter_type + '.png' gp.scale_factor = self.scale_factor gp.title = strat.FINAL_STRATEGY + ' ' + parameter_type pf.plot_line_graph(port_list, adapter = 'pythalesians', gp = gp) # plot all the IR in a bar chart form (can be easier to read!) gp = GraphProperties() gp.file_output = self.DUMP_PATH + strat.FINAL_STRATEGY + ' ' + parameter_type + ' IR.png' gp.scale_factor = self.scale_factor gp.title = strat.FINAL_STRATEGY + ' ' + parameter_type summary = pandas.DataFrame(index = pretty_portfolio_names, data = ir, columns = ['IR']) pf.plot_bar_graph(summary, adapter = 'pythalesians', gp = gp) return port_list