Example #1
0
 def __init__(self, **kwargs):
     self.chart = pygal.Pie(**kwargs)
     self.chart.title = 'Registered Users'
Example #2
0
import pygal

fruits = pygal.Pie()
fruits.title = 'Favourite Foods'

file = open('Fruits.txt', 'r')

for line in file.read().splitlines():
    if line:
        label, value = line.split(': ')
        fruits.add(label, int(value))

file.close()

fruits.render_to_file('fruits_chart1.svg')
Example #3
0
data = {
    'java': 0.16881,
    'c': 0.14996,
    'C++': 0.07471,
    'python': 0.06992,
    'VB.net': 0.04762,
    'C#': 0.03541,
    'PHP': 0.02925,
    'JavaScript': 0.02411,
    'SQL': 0.02316,
    'Assembly language': 0.01409,
    'other': 0.36326
}

#pygal.pie代表饼图,创建一个饼图
graph = pygal.Pie()
graph.title = '2018年8月编程语言市场份额'

for k in data.keys():
    graph.add(k, data[k])

graph.legend_at_bottom = True

#空心饼图
graph.inner_radius = 0.2

#半圆饼图
graph.half_pie = True

graph.render_to_file('pie.svg')
Example #4
0
import pygal
piechart = pygal.Pie()

piechart.title = 'TB IN STATES OF INDIA'
piechart.add('Delhi', 36)
piechart.add('Gujarat', 64)
piechart.add('Haryana', 51)
piechart.add('Madhya Pradesh', 49)
piechart.add('Uttar Pradesh', 56)
piechart.add('West Bengal', 60)
piechart.add('Orissa', 54)
piechart.add('kerala', 55)

piechart.render()
Example #5
0
#mant_cer_T4 = mant_T4[mant_T4['Fecha Termino6'].str.contains(fecha)]

T = ["T1", "T2"]
aux = {}

#Ordenes de tipo T1 cerradas por técnico
for s,t in enumerate(nom_tec):
    df_s = mant_cer_mes.loc[mant_cer_mes['Nombre Técnico'] == t]
    mant_T = [{t:np.shape(df_s[df_s['Tipo de mantención'] == t])[0]} for t in T]
    aux[s] = {t:mant_T}
    
resultados = [aux[i] for i,j in enumerate(aux.items())]

percent_formatter = lambda x: '{:.2g}%'.format(x)

pie_chart = pygal.Pie(print_values = True)
pie_chart.title = "% de OT T1 cerradas v/s total mes\n{}".format(fecha)

if np.shape(mant_T1)[0]!=0:
    for x,y in enumerate(nom_tec):
        print(x,y,resultados[x][y][0]['T1'])
        #todas las generadas - las abiertas (generadas - cerradas)
        pie_chart.add(y,(resultados[x][y][0]['T1'])/np.shape(mant_T1)[0] * 100, formatter = percent_formatter)
    pie_chart.render_in_browser()
else:
    print("\nEn esta fecha no existen OT de tipo T1")

pie_chart = pygal.Pie(print_values = True)
pie_chart .title = "% de OT T2 cerradas v/s total mes\n{}".format(fecha)

if np.shape(mant_T2)[0]!=0:
Example #6
0
def admin():
    # conn = sqlite3.connect(db_location)
    conn = mysql.connector.connect(user=db_user,
                                   password=db_password,
                                   host=db_host,
                                   database=db_database)
    cursor = conn.cursor()

    # GET ALL THE PATIENTS AND PUT THE SENSORS INTO A LIST AND SPLIT AT ',' and sum the sensors
    # cursor.execute("""SELECT COUNT(*) FROM Patients""")
    cursor.execute(("""SELECT COUNT(*) FROM ban.Patients"""))
    num_patients = cursor.fetchone()[0]

    # cursor.execute("""SELECT COUNT(*) FROM Patients WHERE Gender = 'Male'""")
    cursor.execute(
        ("""SELECT COUNT(*) FROM ban.Patients WHERE Gender = 'Male'"""))
    num_males = cursor.fetchone()
    # cursor.execute("""SELECT COUNT(*) FROM Patients WHERE Gender = 'Female'""")
    cursor.execute(
        ("""SELECT COUNT(*) FROM ban.Patients WHERE Gender = 'Female'"""))
    num_females = cursor.fetchone()

    # i dont like this, but couldnt get SQL TO WORK
    # cursor.execute("""SELECT Sensors FROM Patients""")
    cursor.execute(("""SELECT Sensors FROM ban.Patients"""))

    sensors = []
    for c in cursor:
        sensors += c[0].split(",")

    bp = sensors.count("Blood Pressure")
    hr = sensors.count("Heart Rate")
    gl = sensors.count("Glucose Levels")
    bo = sensors.count("Blood Oxygen Saturation")

    # cursor.execute("""SELECT COUNT(*) FROM Readings""")
    cursor.execute(("""SELECT COUNT(*) FROM ban.Readings"""))
    n_records = cursor.fetchone()[0]

    # cursor.execute("""SELECT COUNT(*) FROM Readings""")
    # n_records = cursor.fetchone()[0]

    # cursor.execute("""SELECT AVG(Age) FROM Patients""")
    cursor.execute(("""SELECT AVG(Age) FROM ban.Patients"""))
    x = cursor.fetchone()[0]
    if x:
        avg_age = round(x, 2)
    else:
        avg_age = "Na"

    conn.close()

    pie_chart = pygal.Pie(inner_radius=0.4,
                          legend_at_bottom=True,
                          half_pie=True)
    pie_chart.title = "Gender Distribution"
    pie_chart.add("Male", num_males)
    pie_chart.add("Female", num_females)
    pie_chart_data = pie_chart.render_data_uri()

    bar = pygal.Bar(legend_at_bottom=True,
                    show_x_guides=True,
                    show_y_guides=True)
    bar.title = "Sensor Distribution"
    bar.add("Blood Pressure", [bp])
    bar.add("Heart Rate", [hr])
    bar.add("Glucose Levels", [gl])
    bar.add("Blood Oxygen Saturation", [bo])
    bar_data = bar.render_data_uri()

    return render_template("admin.html",
                           num_patients=num_patients,
                           gender_chart=pie_chart_data,
                           sensors_chart=bar_data,
                           avg_age=avg_age,
                           n_sensors=len(sensors),
                           n_records=n_records,
                           server_name=sys.argv[1])
Example #7
0
import pygal

pie_chart = pygal.Pie()
pie_chart.title = 'Browser usage in February 2012 (in %)'
pie_chart.add('IE', 19.5)
pie_chart.add('Firefox', 36.6)
pie_chart.add('Chrome', 36.3)
pie_chart.add('Safari', 4.5)
pie_chart.add('Opera', 2.3)
pie_chart.render()
Example #8
0
def gender():
    import csv
    import pygal as pg

    # Open File csv
    file = open('AccidentDataset.csv')
    data = csv.reader(file)
    table = [row for row in data]

    # data_list = [[MONTH, YEAR, ADMIT, DEAD, GENDER, AGE], [MONTH, YEAR, ADMIT, DEAD, GENDER, AGE]]
    num = 0
    data_list = []
    for i in range(0, len(table)):
        # ----------> Check Year <----------
        if table[i][4] == "15":
            num += 1
            data_list.append([table[i][3], table[i][4], table[i][6], table[i][7], \
                table[i][17], table[i][18]])

    # Male Variable
    male_list = []
    male_month1, male_month2, male_month3, male_month4, male_month5, male_month6, male_month7, \
    male_month8, male_month9, male_month10, male_month11, male_month12 = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

    # Female Variable
    female_list = []
    female_month1, female_month2, female_month3, female_month4, female_month5, female_month6, female_month7, \
    female_month8, female_month9, female_month10, female_month11, female_month12 = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

    # Total Data
    for i in data_list:
        # Check -----> Month <-----
        if i[0] == "1":
            if i[4] == "1":
                male_month1 += 1
            else:
                female_month1 += 1
        elif i[0] == "2":
            if i[4] == "1":
                male_month2 += 1
            else:
                female_month2 += 1
        elif i[0] == "3":
            if i[4] == "1":
                male_month3 += 1
            else:
                female_month3 += 1
        elif i[0] == "4":
            if i[4] == "1":
                male_month4 += 1
            else:
                female_month4 += 1
        elif i[0] == "5":
            if i[4] == "1":
                male_month5 += 1
            else:
                female_month5 += 1
        elif i[0] == "6":
            if i[4] == "1":
                male_month6 += 1
            else:
                female_month6 += 1
        elif i[0] == "7":
            if i[4] == "1":
                male_month7 += 1
            else:
                female_month7 += 1
        elif i[0] == "8":
            if i[4] == "1":
                male_month8 += 1
            else:
                female_month8 += 1
        elif i[0] == "9":
            if i[4] == "1":
                male_month9 += 1
            else:
                female_month9 += 1
        elif i[0] == "10":
            if i[4] == "1":
                male_month10 += 1
            else:
                female_month10 += 1
        elif i[0] == "11":
            if i[4] == "1":
                male_month11 += 1
            else:
                female_month11 += 1
        elif i[0] == "12":
            if i[4] == "1":
                male_month12 += 1
            else:
                female_month12 += 1

    # 12 Month in male_list
    # male_list = [xxx, xxx, xxx, xxx, xxx, xxx, xxx, xxx, xxx, xxx, xxx, xxx]
    male_list.append([male_month1, male_month2, male_month3, male_month4, male_month5, \
    male_month6, male_month7, male_month8, male_month9, male_month10, male_month11, male_month12])
    male_list = male_list[0]

    # 12 Month in female_list
    # female_list = [xxx, xxx, xxx, xxx, xxx, xxx, xxx, xxx, xxx, xxx, xxx, xxx]
    female_list.append([female_month1, female_month2, female_month3, female_month4, female_month5, \
    female_month6, female_month7, female_month8, female_month9, female_month10, female_month11, female_month12])
    female_list = female_list[0]

    # Create a graph
    graph = pg.Bar(x_labels_major_count=12, show_minor_x_labels=True, truncate_legend=40, \
    legend_at_bottom=False, truncate_label=100)
    # graph title
    graph.title = 'อัตราผู้เกิดอุบัติเหตุแยกตามเพศในปี 2015'
    # X-Axis Label ---> (Month)
    graph.x_labels = ['January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', \
    'September', 'October', 'November', 'December']
    # Y-Axis and label ---> (Gander)
    graph.add('Male', male_list)
    graph.add('Female', female_list)
    # Range of Y-Axis value
    graph.range = [1, 4000]
    # Save graph into file
    graph.render_to_file('graph_gender01.svg')

    # Total All data
    male_all = sum(male_list)
    female_all = sum(female_list)

    # Create a total graph
    graph = pg.Pie()
    # graph title
    graph.title = 'อัตราผู้เกิดอุบัติเหตุแยกตามเพศในปี 2015'
    # Variable ---> (Gander)
    graph.add('Male', male_all)
    graph.add('Female', female_all)
    # Save graph into file
    graph.render_to_file('graph_gender02.svg')

    #Show information
    print("Male\t:", male_list)
    print("Female\t:", female_list)
    print("Data\t: %d" % num)
    print("Year\t: 20%s" % data_list[0][1])
Example #9
0
]
for i in range(41360):
    a = str(df_initial['neighbourhood_cleansed'][i])
    # print("a!!", a)
    a = a[0:3]
    df_initial['neighbourhood_cleansed'][i] = a
    # print("a", a)
    # print("数值:", (df_raw['neighbourhood_cleansed'][i + 1]))
df_raw = df_initial[columns_to_keep].set_index('id')

print("数据还有 {} 行和 {} 列(删去无关列)".format(*df_raw.shape))
print("各类房间类型:")
print(df_raw.room_type.value_counts(normalize=True))
# print(type(df_raw.room_type.value_counts(normalize=True)))
#各类房间类型画图
pie_chart1 = pygal.Pie()
pie_chart1.title = '各类房间类型:'
pie_chart1.add('Entire home/apt',
               df_raw.room_type.value_counts(normalize=True)[0])
pie_chart1.add('Private room',
               df_raw.room_type.value_counts(normalize=True)[1])
pie_chart1.add('Shared room', df_raw.room_type.value_counts(normalize=True)[2])
pie_chart1.render_to_file('各类房间类型bar_chart.svg')
print("各类房屋类型")
print(df_raw.property_type.value_counts(normalize=True))
print(len(df_raw.property_type.value_counts(normalize=True)))
#各类房屋类型画图
pie_chart2 = pygal.Pie()
pie_chart2.title = '各类房屋类型:'
for i in range(len(df_raw.property_type.value_counts(normalize=True))):
    pie_chart2.add(
Example #10
0
def bar():
    with open('pygaldatabar.json', 'r') as bar_file:
        data = json.load(bar_file)
    # custom_style = Style(
    #     label_font_size	= .75em ))
    chart = pygal.Bar(
        style=pygal.style.styles['default'](label_font_size=20, ))
    mark_list = [x['mark'] for x in data]
    chart.add('Annual Mark List', mark_list)
    chart.x_labels = [x['year'] for x in data]
    chart.render_to_file('static/images/bar_chart.svg')
    img_url = 'static/images/bar_chart.svg?cache=' + str(time.time())

    with open('pygaldatamultibar.json', 'r') as multibar_file:
        multi_data = json.load(multibar_file)
    chartmutli = pygal.Bar()
    multi_mark_list = [y['mark'] for y in multi_data]
    tourn_list = [y['tournament'] for y in multi_data]
    chartmutli.add('Annual Mark List', multi_mark_list)
    chartmutli.add('Tournament Score', tourn_list)
    chartmutli.render_to_file('static/images/multi_bar_chart.svg')
    multi_img_url = 'static/images/multi_bar_chart.svg?cache=' + str(
        time.time())

    with open('pygaldataline.json', 'r') as linechart_file:
        linechart_data = json.load(linechart_file)
    linechart = pygal.Line()
    linechart_list_names = [x['broswer'] for x in linechart_data]
    linechart_list = [y['values'] for y in linechart_data]
    for i in range(0, len(linechart_list_names)):
        linechart.add(linechart_list_names[i], linechart_list[i])
    linechart.render_to_file('static/images/line_chart.svg')
    line_img_url = 'static/images/line_chart.svg?cache=' + str(time.time())

    supra = pygal.maps.world.SupranationalWorld()
    supra.add('Asia', [('asia', 1)])
    supra.add('Europe', [('europe', 1)])
    supra.add('North america', [('north_america', 1)])
    supra.add('South america', [('south_america', 1)])
    supra.render_to_file('static/images/world_map.svg')
    worldmap_img_url = 'static/images/world_map.svg?cache=' + str(time.time())

    with open('pygaldatapie.json', 'r') as piechart_file:
        piechart_data = json.load(piechart_file)
    pie_chart = pygal.Pie()
    piechart_list_names = [x['broswer'] for x in piechart_data]
    piechart_list_value = [y['value'] for y in piechart_data]
    pie_chart.title = 'Browser usage in February 2012 (in %)'
    for i in range(0, len(piechart_list_names)):
        pie_chart.add(piechart_list_names[i], piechart_list_value[i])
    pie_chart.render_to_file('static/images/pie_chart.svg')
    piechart_img_url = 'static/images/pie_chart.svg?cache=' + str(time.time())

    gaugechart = pygal.SolidGauge(inner_radius=0.70)
    percent_formatter = lambda x: '{:.10g}%'.format(x)
    dollar_formatter = lambda x: '{:.10g}$'.format(x)
    with open('pygaldatagauge.json', 'r') as gauagechart_file:
        gauagechart_data = json.load(gauagechart_file)

    gauagechart_series = [x['series'] for x in gauagechart_data]
    gauagechart_values = [y['value'] for y in gauagechart_data]
    gauagechart_max_values = [z['max_value'] for z in gauagechart_data]

    for i in range(0, len(gauagechart_series)):
        gaugechart.add(gauagechart_series[i],
                       [{
                           'value': gauagechart_values[i],
                           'max_value': gauagechart_max_values[i]
                       }],
                       formatter=dollar_formatter)
    gaugechart.render_to_file('static/images/gauge_chart.svg')
    gaugechart_img_url = 'static/images/gauge_chart.svg?cache=' + str(
        time.time())

    return render_template('app.html', **locals())
Example #11
0
 def __init__(self, **kwargs):
     self.chart = pygal.Pie(**kwargs)
     self.chart.title = 'Amount of Fruits'
Example #12
0
print("Query 5 finished successfully")
### 6
sql_query6 = '''select SUM(amount) as totalAmount, YEAR(paymentDate) from payments GROUP BY YEAR(paymentDate) ORDER BY YEAR(paymentDate) DESC;'''

mycursor.execute(sql_query6)

query_result = mycursor.fetchall()

total_payments = []
years= []

for record in query_result:
    total_payments.append(record[0])
    years.append(record[1])

pie_chart6 = pygal.Pie()
pie_chart6.title = "6"
pie_chart6.add("2005", total_payments[0])
pie_chart6.add("2004", total_payments[1])
pie_chart6.add("2003", total_payments[2])
pie_chart6.render_to_file("images/q6.svg")
print("Query 6 finished successfully")

### 7

sql_query7 = '''select SUM(amount) as totalAmount, MONTH(paymentDate) from payments WHERE YEAR(paymentDate) = 2004 GROUP BY MONTH(paymentDate) ORDER BY MONTH(paymentDate) ASC;'''
mycursor.execute(sql_query7)
query_result = mycursor.fetchall()

total_payments = []
months = []
Example #13
0
def graph(dic_2, lis, lis_1):
    """ plot graph """
    line_chart = pygal.Pie()
    for i in lis_1:
        line_chart.add(i[0], (int(((i[1]*100)/(len(lis))*100)))/100)
    line_chart.render_to_file('overallpopgame.svg')
Example #14
0
def build_image_temp(coin, start, end, email):
    # 近期行情
    if coin == 'BTC':
        hq = BitcoinChartsDatas.objects.using('btc').order_by('hisdate')
    else:
        hq = LitecoinChartsDatas.objects.using('ltc').order_by('hisdate')
    hq = hq.filter(hisdate__gte=start, hisdate__lte=end)
    hq_date = map(lambda x: x.hisdate, hq)
    if coin == 'BTC':
        hq_data = map(lambda x: x.price, hq)
    else:
        hq_data = map(lambda x: x.price_usd, hq)

    custom_css = '''
              {{ id }}.graph > .background {
                fill: rgba(255,255,255,0);
              }
              {{ id }}.plot > .background {
                fill: rgba(255,255,255,0);
              }
              {{ id }}.title {
                font-family: Songti;
              }
              {{ id }}text {
                font-family: Songti;
              }
              {{ id }}.legends .legend text {
                font-family: Songti;
              }
              {{ id }}.axis text {
                font-family: Songti;
              }
              {{ id }}.axis.y text {
                font-family: Songti;
              }
              {{ id }}#tooltip text {
                font-family: Songti;
              }
              '''
    custom_css_file = '/tmp/pygal_temp_custom_style.css'
    with open(custom_css_file, 'w') as f:
        f.write(custom_css)

    config = pygal.Config()
    config.css.append('file://' + custom_css_file)
    config.x_value_formatter = lambda x: x.strftime('%-m/%-d')
    config.max_scale = 7
    config.min_scale = 7
    config.legend_at_bottom = True

    hq_chart = pygal.Line(config,
                          title=u'{}行情'.format(coin_name(coin)),
                          show_legend=False)
    hq_chart.x_labels = hq_date
    hq_chart.add('', hq_data)
    hq_path = u'{}chart/{}_hq_{}_{}.png'.format(settings.MEDIA_ROOT, coin,
                                                start, end)
    hq_chart.render_to_png(hq_path)

    # 账户买卖比例
    if coin == 'BTC':
        qs1 = TBitSpecialAddress.objects.using('btc').filter(
            address_type=1).only('address')
        qs2 = TBitSpecialAddress.objects.using('btc').filter(
            address_type=2).only('address')
        table = 'blockchain_db.bitcoin_cashflow_output'
        cursor = connections['btc'].cursor()

    else:
        qs1 = TLiteSpecialAddress.objects.using('ltc').filter(
            address_type=1).only('address')
        qs2 = TLiteSpecialAddress.objects.using('ltc').filter(
            address_type=2).only('address')
        table = 'ltc_db.litecoin_cashflow_output'
        cursor = connections['ltc'].cursor()

    addresses1 = map(lambda x: x.address, qs1)
    addresses2 = map(lambda x: x.address, qs2)

    sell_sql = '''
        SELECT
            count(*)
        FROM
            {0}
        WHERE
            (output_value - input_value) < 0
        AND address IN %s
        AND block_time > %s
        AND block_time < %s
        ORDER BY
            block_time DESC
        
    '''.format(table)
    buy_sql = '''
        SELECT
            count(*)
        FROM
            {0}
        WHERE
            (output_value - input_value) > 0
        AND address IN %s
        AND block_time > %s
        AND block_time < %s
        ORDER BY
            block_time DESC
    '''.format(table)

    cursor.execute(sell_sql, [tuple(addresses1), start, end])
    sell1 = cursor.fetchone()[0]

    cursor.execute(sell_sql, [tuple(addresses2), start, end])
    sell2 = cursor.fetchone()[0]

    cursor.execute(buy_sql, [tuple(addresses1), start, end])
    buy1 = cursor.fetchone()[0]

    cursor.execute(buy_sql, [tuple(addresses2), start, end])
    buy2 = cursor.fetchone()[0]

    bar_chart = pygal.HorizontalStackedBar(config,
                                           print_values=True,
                                           title=u'聪明账户与韭菜账户买卖比例')
    bar_chart.x_labels = ('', u'聪明账户', u'韭菜账户', '')
    if buy1 and buy2:
        bar_chart.add(u'买', (buy1 / (sell1 + buy1), buy2 / (sell2 + buy2)))
        bar_chart.add(u'卖', (sell1 / (sell1 + buy1), sell2 / (sell2 + buy2)))

    bar_chart_path = u'{}chart/{}_bar_{}_{}.png'.format(
        settings.MEDIA_ROOT, coin, start, end)
    bar_chart.render_to_png(bar_chart_path)

    # 前5大交易所充值提现
    if coin == 'BTC':
        top5 = [19, 124, 84, 107, 602]
        recharge = BitExchangeRecharge.objects.using('btc').filter(groupind__in=top5, trans_date__gte=start, trans_date__lte=end)\
            .values('trans_date').annotate(sum_recharge=Sum('tot_recharge')).order_by('trans_date')
        withdraw = BitExchangeWithdraw.objects.using('btc').filter(groupind__in=top5, trans_date__gte=start, trans_date__lte=end)\
            .values('trans_date').annotate(sum_withdraw=Sum('tot_withdraw')).order_by('trans_date')
    else:
        top5 = [21, 1, 110, 101, 28]
        recharge = LiteExchangeRecharge.objects.using('ltc').filter(groupind__in=top5, trans_date__gte=start, trans_date__lte=end)\
            .values('trans_date').annotate(sum_recharge=Sum('tot_recharge')).order_by('trans_date')
        withdraw = LiteExchangeWithdraw.objects.using('ltc').filter(groupind__in=top5, trans_date__gte=start, trans_date__lte=end)\
            .values('trans_date').annotate(sum_withdraw=Sum('tot_withdraw')).order_by('trans_date')
    recharge_data = map(lambda x: x.get('sum_recharge'), recharge)
    x_labels = map(lambda x: x.get('trans_date'), recharge)
    withdraw_data = map(lambda x: x.get('sum_withdraw'), withdraw)

    tran_chart = pygal.Line(config, title=u'前5大交易所充值提现')
    tran_chart.x_labels = x_labels
    tran_chart.add(u'充值', recharge_data)
    tran_chart.add(u'提现', withdraw_data)
    tran_chart_path = u'{}chart/{}_tran_{}_{}.png'.format(
        settings.MEDIA_ROOT, coin, start, end)
    tran_chart.render_to_png(tran_chart_path)

    # 前1000持仓变化

    if coin == 'BTC':
        qs = TBitBalanceRank1000His.objects.using('btc').filter(his_date__gte=start, his_date__lte=end)\
            .values('his_date').annotate(sum_balance=Sum('balance')).order_by('his_date')
        address_qs = TBitBalanceRank1000His.objects.using('btc').filter(his_date__gte=start, his_date__lte=end)\
            .values('address').annotate(count=Count('address')).order_by('address')
        addresses = set(map(lambda x: x.get('address'), address_qs))
        org_qs = BitKnewAddress2.objects.using('btc').filter(
            onoroff=1, address__in=addresses)
        org_address = map(lambda x: x.address, org_qs)
        org_exclude_qs = TBitBalanceRank1000His.objects.using('btc').filter(his_date__gte=start, his_date__lte=end).exclude(address__in=org_address)\
            .values('his_date').annotate(sum_balance=Sum('balance')).order_by('his_date')
    else:
        qs = TLiteBalanceRank1000His.objects.using('ltc').filter(his_date__gte=start, his_date__lte=end)\
            .values('his_date').annotate(sum_balance=Sum('balance')).order_by('his_date')

        address_qs = TLiteBalanceRank1000His.objects.using('ltc').filter(his_date__gte=start, his_date__lte=end)\
            .values('address').annotate(count=Count('address')).order_by('address')
        addresses = set(map(lambda x: x.get('address'), address_qs))
        org_qs = LiteKnewAddress2.objects.using('ltc').filter(
            onoroff=1, address__in=addresses)
        org_address = map(lambda x: x.address, org_qs)
        org_exclude_qs = TLiteBalanceRank1000His.objects.using('ltc').filter(his_date__gte=start, his_date__lte=end).exclude(address__in=org_address)\
            .values('his_date').annotate(sum_balance=Sum('balance')).order_by('his_date')

    hold_data = map(lambda x: x.get('sum_balance'), qs)
    org_exclude_hold_data = map(lambda x: x.get('sum_balance'), org_exclude_qs)
    x_labels = map(lambda x: x.get('his_date'), qs)

    hold_chart = pygal.Line(config, fill=True, title=u'前1000地址累计持仓')
    hold_chart.x_labels = x_labels
    hold_chart.add(u'前1000持仓', hold_data)
    hold_chart.add(u'前1000(排除交易所)', org_exclude_hold_data)
    hold_chart_path = u'{}chart/{}_hold_{}_{}.png'.format(
        settings.MEDIA_ROOT, coin, start, end)
    hold_chart.render_to_png(hold_chart_path)

    # 用户类型持仓
    if coin == 'BTC':
        all_balance = TBitBalanceRank1000His.objects.using('btc').filter(his_date__gte=start, his_date__lte=end)\
            .aggregate(sum_balance=Sum('balance')).get('sum_balance')
        address_qs = TBitBalanceRank1000His.objects.using('btc').filter(his_date__gte=start, his_date__lte=end)\
            .values('address').annotate(count=Count('address')).order_by('address')
        addresses = set(map(lambda x: x.get('address'), address_qs))
        miner_qs = BitMinerlist.objects.using('btc').filter(
            address__in=addresses)
        miner_address = map(lambda x: x.address, miner_qs)
        org_qs = BitKnewAddress2.objects.using('btc').filter(
            onoroff=1, address__in=addresses)
        org_address = map(lambda x: x.address, org_qs)
        org_balance = TBitBalanceRank1000His.objects.using('btc').filter(his_date__gte=start, his_date__lte=end).filter(address__in=org_address)\
            .aggregate(sum_balance=Sum('balance')).get('sum_balance', 0)
        miner_balance = TBitBalanceRank1000His.objects.using('btc').filter(his_date__gte=start, his_date__lte=end).filter(address__in=miner_address)\
            .aggregate(sum_balance=Sum('balance')).get('sum_balance', 0)
    else:
        all_balance = TLiteBalanceRank1000His.objects.using('ltc').filter(his_date__gte=start, his_date__lte=end)\
            .aggregate(sum_balance=Sum('balance')).get('sum_balance')
        address_qs = TLiteBalanceRank1000His.objects.using('ltc').filter(his_date__gte=start, his_date__lte=end)\
            .values('address').annotate(count=Count('address')).order_by('address')
        addresses = set(map(lambda x: x.get('address'), address_qs))
        miner_qs = LiteMinerlist.objects.using('ltc').filter(
            address__in=addresses)

        miner_address = map(lambda x: x.address, miner_qs)
        org_qs = LiteKnewAddress2.objects.using('ltc').filter(
            onoroff=1, address__in=addresses)
        org_address = map(lambda x: x.address, org_qs)
        org_balance = TLiteBalanceRank1000His.objects.using('ltc').filter(his_date__gte=start, his_date__lte=end).filter(address__in=org_address)\
            .aggregate(sum_balance=Sum('balance')).get('sum_balance', 0)
        miner_balance = TLiteBalanceRank1000His.objects.using('ltc').filter(his_date__gte=start, his_date__lte=end).filter(address__in=miner_address)\
            .aggregate(sum_balance=Sum('balance')).get('sum_balance', 0)

    pie_chart = pygal.Pie(config, print_values=True, title=u'用户类型持仓占比')
    pie_chart.value_formatter = lambda x: '{:.2%}'.format(x)
    pie_chart.legend_at_bottom_columns = 3
    if all_balance:
        org_data = org_balance / all_balance
        miner_data = miner_balance / all_balance
        pie_chart.add(u'交易所', org_data)
        pie_chart.add(u'矿机', miner_data)
        pie_chart.add(u'其他', 1 - org_data - miner_data)
    pie_chart_path = u'{}chart/{}_pie_{}_{}.png'.format(
        settings.MEDIA_ROOT, coin, start, end)
    pie_chart.render_to_png(pie_chart_path)

    send_mail_files(u'{}至{}{}模版'.format(start, end, coin_name(coin)), [
        email,
    ], [
        hq_path, bar_chart_path, tran_chart_path, hold_chart_path,
        pie_chart_path
    ])
Example #15
0
def home():
    custom_style = Style(colors=('#351508', '#404040', '#9BC850'))
    title = 'Screen ID analysis'
    bar_chart = pygal.Bar(width=400,
                          height=400,
                          explicit_size=True,
                          title=title,
                          style=custom_style)
    var_x_labels = []
    var_data = []
    #    print ("__xlabels__",var_x_labels)

    for idx1 in list(range(0, len(data_time_spent))):
        var_x_labels.append(idx1 + 1)
        var_data.append(data_time_spent.Time[idx1])
#        print(data_time_spent.Time[idx1])

    bar_chart.x_labels = var_x_labels
    #    bar_chart.y_labels = var_y_labels
    #    var_time_spent = [data_time_spent[x] for x in data_time_spent]
    #    print ("_Time spent_",var_time_spent)
    #    print ("_Time spent_0___",var_time_spent[0])
    #    print ("_Time spent_1___",var_time_spent[1])
    var_time_spent = var_data
    #    print ("==bar chart==",var_time_spent)
    bar_chart.add('Avg active session', var_time_spent)
    bar_chart.render_to_file('static/images/bar_chart.svg')

    ###################################
    title2 = 'Avg time spent on each screen'
    custom_style = Style(colors=('#059467', '#9BC850', '#E80080'))
    avg_bar_chart = pygal.Bar(width=1200,
                              height=800,
                              explicit_size=True,
                              title=title2,
                              x_label_rotation=90,
                              style=custom_style)
    var_x_labels = []
    var_data = []
    #    print ("__xlabels__",var_x_labels)
    #    print ("avg time spent===",avg_time_spent)
    for idx1 in list(range(0, len(avg_time_spent))):
        var_x_labels.append(avg_time_spent.Screen_id[idx1])
        var_data.append(avg_time_spent.Avg_Time[idx1])
#        print(avg_time_spent.Avg_Time[idx1])

    avg_bar_chart.x_labels = var_x_labels
    #    bar_chart.y_labels = var_y_labels
    #    var_time_spent = [data_time_spent[x] for x in data_time_spent]
    #    print ("_Time spent_",var_time_spent)
    #    print ("_Time spent_0___",var_time_spent[0])
    #    print ("_Time spent_1___",var_time_spent[1])
    var_time_spent = var_data
    avg_bar_chart.add('Avg time sec', var_data)
    avg_bar_chart.render_to_file('static/images/screen_avg_chart.svg')

    ###################################
    title2 = 'Least used screens'
    custom_style = Style(colors=('#1878f7', '#404040', '#E80080'))
    avg_bar_chart = pygal.Bar(width=1200,
                              height=600,
                              explicit_size=True,
                              title=title2,
                              x_label_rotation=90,
                              style=custom_style)
    var_x_labels = []
    var_data = []
    #    print ("__xlabels__",var_x_labels)

    for idx1 in list(range(0, len(data_tf_idf))):
        var_x_labels.append(data_tf_idf.GUI[idx1])
        var_data.append(data_tf_idf.Priority[idx1])
#        print(avg_time_spent.Avg_Time[idx1])

    avg_bar_chart.x_labels = var_x_labels
    #    bar_chart.y_labels = var_y_labels
    #    var_time_spent = [data_tf_idf[x] for x in data_tf_idf]
    #    print ("_Time spent_",var_time_spent)
    #    print ("_Time spent_0___",var_time_spent[0])
    #    print ("_Time spent_1___",var_time_spent[1])
    var_time_spent = var_data
    avg_bar_chart.add('Least used screen', var_time_spent)
    avg_bar_chart.render_to_file('static/images/tf_idf_chart.svg')

    #====================Donut chart of the screens used==================
    print("===Dounut Chart==========")
    pie_chart = pygal.Pie(width=1200,
                          height=600,
                          explicit_size=True,
                          inner_radius=.2)
    pie_chart.title = 'Time spent on each screen (in %)'
    var_x_labels = []
    var_data = []
    total_values = 0
    for idx1 in list(range(0, len(avg_time_spent))):
        total_values = total_values + avg_time_spent.Avg_Time[idx1]

#    print ("Total value===",total_values)
    for idx1 in list(range(0, len(avg_time_spent))):
        prcnt = round((avg_time_spent.Avg_Time[idx1] / total_values) * 100, 2)
        #        print ("% = ",prcnt)
        pie_chart.add(avg_time_spent.Screen_id[idx1], prcnt)

    pie_chart.render_to_file('static/images/donut.svg')

    #==================================Gauge chart==========
    gauge = pygal.SolidGauge(inner_radius=0.70)
    percent_formatter = lambda x: '{:.10g}%'.format(x)
    gauge.value_formatter = percent_formatter

    #====scatter plot=====================================

    xy_chart = pygal.XY(width=1200,
                        height=600,
                        explicit_size=True,
                        stroke=False)
    xy_chart.title = 'Scatter plot of the screen ID and time spent'
    #    var_temp_lst = []
    var_screen_id_dict = defaultdict(list)

    for idx in list(range(0, len(avg_time_spent))):
        #        var_screen_id_dict[avg_time_spent.Screen_id[idx]]={}
        print(idx, "=>", avg_time_spent.Screen_id[idx])
        for idx2 in list(range(0, len(var_full_data))):
            if (avg_time_spent.Screen_id[idx] == var_full_data.ScreenName[idx2]
                ):
                #                print (idx2,"count=",var_full_data.ScreenName[idx2])
                if (idx2 + 1 >= len(var_full_data)):
                    continue
                else:
                    var_screen_id_dict[avg_time_spent.Screen_id[idx]].append(
                        var_full_data.ScreenName[idx2 + 1])
#                    print("screneid =",avg_time_spent.Screen_id[idx],"next id=",var_full_data.ScreenName[idx2+1])

    print("The next screen list stored==========")
    print(var_screen_id_dict)

    #        var_x_labels.append(var_full_data.ScreenName[idx1])
    #        var_data.append(data_tf_idf.ActiveTime[idx1])
    #    print ("===values==",var_data)
    #    xy_chart.add('ScreenIds', var_data)
    xy_chart.add('2', [(.1, .15), (.12, .23), (.4, .3), (.6, .4), (.21, .21),
                       (.5, .3), (.6, .8), (.7, .8)])
    xy_chart.add('3', [(.05, .01), (.13, .02), (1.5, 1.7), (1.52, 1.6),
                       (1.8, 1.63), (1.5, 1.82), (1.7, 1.23), (2.1, 2.23),
                       (2.3, 1.98)])
    xy_chart.render_to_file('static/images/scatter.svg')

    #======================================

    my_html = create_html_page()

    #    print ("==========================")
    #    print (my_html)
    #    print ("==========================")
    return my_html
Example #16
0
fitxerOut.write("2. Numero de paraules del document: " + str(numeroParaules) +
                '\n\n')

fitxerOut.write("3. Mitjana de paraules per linia: " + str(mitpar) + '\n\n')

histogram = pygal.Bar(title='Paraules per linia')
for x in paraulesXlinia:
    histogram.add("Linia " + str(x[0]), x[1])
histogram.render_in_browser()

fitxerOut.write("4. Promig de lletres en el document: \n")

for key, value in MapDeLletres.iteritems():
    fitxerOut.write("Caracter: " + str(key) + " Valor: " + str(value) + "\n")

histLletres = pygal.Pie(title='Caracters utilitzats en el text')

for val in llet:
    k = val[0]
    v = val[1]
    histLletres.add(str(k), v)
histLletres.render_in_browser()

fitxerOut.write("\n5. Promig de longitud de paraules en el document: " +
                str(mitjanaCaracXPar) + "\n")

histLong = pygal.HorizontalBar(title='Longitud de les paraules')
for val in vecLongPar:
    k = val[0]
    v = val[1]
    histLong.add(str(k), v)
Example #17
0
def draw(file_index_dict, q_id):
    # q_id is an int
    pic_dir = '../pics/'
    if not os.path.exists(pic_dir):
        os.makedirs(pic_dir)

    q_dir = pic_dir + str(q_id) + "/"
    if not os.path.exists(q_dir):
        os.makedirs(q_dir)

    # 1. use pygal to draw a bar of suspect_index (decrease)
    sorted_items = sorted(file_index_dict.items(),
                          key=lambda x: x[1],
                          reverse=True)

    x_ax, y_ax = [], []
    for item in sorted_items:
        x_ax.append(item[0])
        y_ax.append(item[1])

    # visualize
    my_style = LS("#006670", base_style=LCS)

    my_config = pygal.Config()
    my_config.x_label_rotation = 45
    my_config.show_legend = False
    my_config.title_font_size = 24
    my_config.major_label_font_size = 18  # OF NO USE?
    my_config.label_font_size = 14
    my_config.truncate_label = 15
    my_config.show_y_guides = True
    my_config.width = 1000

    chart = pygal.Bar(my_config, style=my_style)
    chart.title = "Most-suspected Files in Question NO." + str(q_id)
    chart.x_labels = x_ax

    chart.add("Suspect Index:", y_ax)
    # chart.render_to_file("C:\\Users\\11381\\Desktop\\dataBar.svg")
    chart.render_to_file(q_dir + "dataBar.svg")

    # 2. draw a pie of proportion of suspect-index at all levels
    pie = pygal.Pie(inner_radius=.4)
    pie.title = "Proportion of Suspect-Index at all levels (in %)"

    n_00_01 = count_range_num(y_ax, 0, 0.1)
    n_01_03 = count_range_num(y_ax, 0.1, 0.3)
    n_03_05 = count_range_num(y_ax, 0.3, 0.5)
    n_05_07 = count_range_num(y_ax, 0.5, 0.7)
    n_07_08 = count_range_num(y_ax, 0.7, 0.8)
    n_08_09 = count_range_num(y_ax, 0.8, 0.9)
    n_09_10 = count_range_num(y_ax, 0.9, 1)
    n_total = len(y_ax)

    pie.add("0.0 ~ 0.1", round(n_00_01 / n_total * 100, 2))
    pie.add("0.1 ~ 0.3", round(n_01_03 / n_total * 100, 2))
    pie.add("0.3 ~ 0.5", round(n_03_05 / n_total * 100, 2))
    pie.add("0.5 ~ 0.7", round(n_05_07 / n_total * 100, 2))
    pie.add("0.7 ~ 0.8", round(n_07_08 / n_total * 100, 2))
    pie.add("0.8 ~ 0.9", round(n_08_09 / n_total * 100, 2))
    pie.add("0.9 ~ 1.0", round(n_09_10 / n_total * 100, 2))

    # pie.render_to_file("C:\\Users\\11381\\Desktop\\dataPie.svg")
    pie.render_to_file(q_dir + "dataPie.svg")
Example #18
0
def pie_graph(data):
    graph = pygal.Pie()
    for i, item in enumerate(data):
        graph.add(str(item[0]), item[1])
    return graph
def data_visualization():
    ''' 
    Add components to your pie chart
     1. add title
     2. Partition your pie chart
     '''

    cur.execute("""
        SELECT type, count(type)
        FROM public.inventories
        GROUP BY type;    
    """)

    product_service = cur.fetchall()

    # print(product_service)

    # Initialize your pie chart
    pie_chart = pygal.Pie()


    # my_pie_data = [
    #     ('Nairobi', 63),
    #     ('Mombasa', 20),
    #     ('Kilifi', 17),
    #     ('Machakos', 30),
    #     ('Kiambu', 7)
    # ]


    pie_chart.title = 'Ratio of product and service'
    for each in product_service:
        pie_chart.add(each[0], each[1])

    # pie_chart.add('Nairobi', 63)
    # pie_chart.add('Mombasa', 20)
    # pie_chart.add('Kilifi', 17)
    # pie_chart.add('Machakos', 30)
    # pie_chart.add('Kiambu', 7)

    pie_data = pie_chart.render_data_uri()

    # end of piechart

    # start of line graph

    # represennts sales made in every month

    cur.execute("""
        SELECT EXTRACT(MONTH FROM s.created_at) as sales_month, sum(quantity * selling_price) as total_sales
        from sales as s
        join inventories as i on s.inv_id = i.id
        GROUP BY sales_month
        ORDER BY sales_month
    """)

    monthly_sales=cur.fetchall()
    # print(monthly_sales)

    data = [
        {'month': 'January', 'total': 22},
        {'month': 'February', 'total': 27},
        {'month': 'March', 'total': 23},
        {'month': 'April', 'total': 20},
        {'month': 'May', 'total': 12},
        {'month': 'June', 'total': 32},
        {'month': 'July', 'total': 42},
        {'month': 'August', 'total': 72},
        {'month': 'September', 'total': 52},
        {'month': 'October', 'total': 42},
        {'month': 'November', 'total': 92},
        {'month': 'December', 'total': 102}
    ]
    x = []
    sales = []

    for each in  monthly_sales:
        x.append(each[0])
        sales.append(each[1])
    
    # print(x)
    # print(sales)

    line_graph = pygal.Line()

    line_graph.title = 'Total sales made in every month in the year 2019'
    line_graph.x_labels = map(str, x)
    # line_graph.add('Firefox', [None, None,    0, 16.6,   25,   31, 36.4, 45.5, 46.3, 42.8, 37.1, 42.8])
    # line_graph.add('Chrome',  [None, None, None, None, None, None,    0,  3.9, 10.8, 23.8, 35.3, 23.8])
    # line_graph.add('IE',      [85.8, 84.6, 84.7, 74.5,   66, 58.6, 54.7, 44.8, 36.2, 26.6, 20.1, 26.6])
    # line_graph.add('Others',  [14.2, 15.4, 15.3,  8.9,    9, 10.4,  8.9,  5.8,  6.7,  6.8,  7.5, 26.6])
    line_graph.add('Total Sales', sales)

    line_data = line_graph.render_data_uri()

    '''
    x = "tech"
    y = x
    y = x = 'tech'

    '''
    return render_template('charts.html', pie=pie_data, line=line_data)
def predict():

    id = [int(x) for x in request.form.values()]
    id_current = id[0]
    # Extract the ids
    features = pd.read_csv('../application_train.csv')
    test_features2 = pd.read_csv('../application_test.csv')
    test_features = test_features2.loc[test_features2['SK_ID_CURR'] ==
                                       id_current]
    #print(row)
    missing_values = (
        test_features.loc[test_features['SK_ID_CURR'] == id_current]
    ).iloc[0].isnull().sum() / len(test_features.columns)

    encoding = 'ohe'
    n_folds = 5
    train_ids = features['SK_ID_CURR']
    test_ids = test_features['SK_ID_CURR']

    # Extract the labels for training
    labels = features['TARGET']

    # Remove the ids and target
    features = features.drop(columns=['SK_ID_CURR', 'TARGET'])
    test_features = test_features.drop(columns=['SK_ID_CURR'])

    # One Hot Encoding
    if encoding == 'ohe':
        features = pd.get_dummies(features)
        test_features = pd.get_dummies(test_features)

        # Align the dataframes by the columns
        features, test_features = features.align(test_features,
                                                 join='inner',
                                                 axis=1)

        # No categorical indices to record
        cat_indices = 'auto'

        # Integer label encoding
    elif encoding == 'le':

        # Create a label encoder
        label_encoder = LabelEncoder()

        # List for storing categorical indices
        cat_indices = []

        # Iterate through each column
        for i, col in enumerate(features):
            if features[col].dtype == 'object':
                # Map the categorical features to integers
                features[col] = label_encoder.fit_transform(
                    np.array(features[col].astype(str)).reshape((-1, )))
                test_features[col] = label_encoder.transform(
                    np.array(test_features[col].astype(str)).reshape((-1, )))

                # Record the categorical indices
                cat_indices.append(i)

        # Catch error if label encoding scheme is not valid
    else:
        raise ValueError("Encoding must be either 'ohe' or 'le'")

    print('Training Data Shape: ', features.shape)
    print('Testing Data Shape: ', test_features.shape)

    # Extract feature names
    feature_names = list(features.columns)

    # Convert to np arrays
    features = np.array(features)
    test_features = np.array(test_features)

    # Create the kfold object
    k_fold = KFold(n_splits=n_folds, shuffle=True, random_state=50)

    # Empty array for feature importances
    feature_importance_values = np.zeros(len(feature_names))

    # Empty array for test predictions
    test_predictions = np.zeros(test_features.shape[0])

    # Empty array for out of fold validation predictions
    out_of_fold = np.zeros(features.shape[0])

    # Lists for recording validation and training scores
    valid_scores = []
    train_scores = []

    # Iterate through each fold
    for train_indices, valid_indices in k_fold.split(features):

        # Training data for the fold
        train_features, train_labels = features[train_indices], labels[
            train_indices]
        # Validation data for the fold
        valid_features, valid_labels = features[valid_indices], labels[
            valid_indices]

        # Create the model
        model = lgb.LGBMClassifier(n_estimators=100,
                                   objective='binary',
                                   class_weight='balanced',
                                   learning_rate=0.05,
                                   reg_alpha=0.1,
                                   reg_lambda=0.1,
                                   subsample=0.8,
                                   n_jobs=-1,
                                   random_state=50)

        # Train the model
        model.fit(train_features,
                  train_labels,
                  eval_metric='auc',
                  eval_set=[(valid_features, valid_labels),
                            (train_features, train_labels)],
                  eval_names=['valid', 'train'],
                  categorical_feature=cat_indices,
                  early_stopping_rounds=100,
                  verbose=200)

        #pickle.dump(model, open('model.pkl','wb'))
        # Record the best iteration
        best_iteration = model.best_iteration_

        # Record the feature importances
        feature_importance_values += model.feature_importances_ / k_fold.n_splits

        # Make predictions
        test_predictions += model.predict_proba(
            test_features, num_iteration=best_iteration)[:,
                                                         1] / k_fold.n_splits

        # Record the out of fold predictions
        out_of_fold[valid_indices] = model.predict_proba(
            valid_features, num_iteration=best_iteration)[:, 1]

        # Record the best score
        valid_score = model.best_score_['valid']['auc']
        train_score = model.best_score_['train']['auc']

        valid_scores.append(valid_score)
        train_scores.append(train_score)

        # Clean up memory
        gc.enable()
        del model, train_features, valid_features
        gc.collect()

        # Make the submission dataframe
    submission = pd.DataFrame({
        'SK_ID_CURR': test_ids,
        'TARGET': test_predictions
    })

    # Make the feature importance dataframe
    feature_importances = pd.DataFrame({
        'feature': feature_names,
        'importance': feature_importance_values
    })

    # Overall validation score
    valid_auc = roc_auc_score(labels, out_of_fold)

    # Add the overall scores to the metrics
    valid_scores.append(valid_auc)
    train_scores.append(np.mean(train_scores))

    # Needed for creating dataframe of validation scores
    fold_names = list(range(n_folds))
    fold_names.append('Moyenne')

    # Dataframe of validation scores
    metrics = pd.DataFrame({
        'fold': fold_names,
        'train': train_scores,
        'valid': valid_scores
    })

    #final_features = [np.array(int_features)]
    #prediction = model.metrics
    Row = submission
    print(submission.iloc[0]['TARGET'])
    #fig = Figure()
    #output = round(prediction[0], 2)
    #labels = 'Difficulté de paiement', 'Pas de difficulté'
    #sizes = [submission.iloc[0]['TARGET'], (1-submission.iloc[0]['TARGET'])]
    #explode = (0, 0.1)  # only "explode" the 2nd slice (i.e. 'Hogs')

    #fig1, ax1 = plt.subplots()
    #ax1.pie(sizes, explode=explode, labels=labels, autopct='%1.1f%%',shadow=True, startangle=90)
    #ax1.axis('equal')  # Equal aspect ratio ensures that pie is drawn as a circle.
    pngImage = io.BytesIO()
    labels = ['Difficulté de paiement', 'Pas de difficulté']
    values = [submission.iloc[0]['TARGET'], (1 - submission.iloc[0]['TARGET'])]

    #pngImageB64String = "data:image/png;base64,"
    #pngImageB64String += base64.b64encode(pngImage.getvalue()).decode('utf8')
    #fig = Figure()
    #axis = fig.add_subplot(1, 1, 1)
    #axis.set_title("title")
    #axis.set_xlabel("x-axis")
    #axis.set_ylabel("y-axis")
    #axis.grid()
    #axis.plot(range(5), range(5), "ro-")
    #labels = 'Frogs', 'Hogs', 'Dogs', 'Logs'
    #sizes = [15, 30, 45, 10]
    #explode = (0, 0.1, 0, 0)  # only "explode" the 2nd slice (i.e. 'Hogs')

    #fig1, ax1 = plt.subplots()
    #ax1.pie(sizes, explode=explode, labels=labels, autopct='%1.1f%%',
    #shadow=True, startangle=90)
    #ax1.axis('equal')  # Equal aspect ratio ensures that pie is drawn as a circle.

    # Convert plot to PNG image
    #pngImage = io.BytesIO()
    #FigureCanvas(ax1).print_png(pngImage)

    # Encode PNG image to base64 string
    #pngImageB64String = "data:image/png;base64,"
    #pngImageB64String += base64.b64encode(pngImage.getvalue()).decode('utf8')
    pie_chart = pygal.Pie(half_pie=True, legend_at_bottom=True)
    pie_chart.title = 'Prévisions sur les facilités de paiement (in %)'
    pie_chart.add('Pas Difficulté', (1 - submission.iloc[0]['TARGET']))
    pie_chart.add('Difficulté', submission.iloc[0]['TARGET'])
    pie_chart_data = pie_chart.render_data_uri()

    pie_chart_missing = pygal.Pie(half_pie=True, legend_at_bottom=True)
    pie_chart_missing.title = '% de données manquantes'
    pie_chart_missing.add('% Value', (1 - missing_values))
    pie_chart_missing.add('% Missing Value', (missing_values))
    pie_chart_data_missing = pie_chart_missing.render_data_uri()

    return render_template('blank.html',
                           pie_chart_data=pie_chart_data,
                           pie_chart_data_missing=pie_chart_data_missing,
                           prediction_text='Sales should be $ {}'.format(
                               1 - submission.iloc[0]['TARGET']))
Example #21
0
def index():
    tasks = []
    api = tweepy.API(auth,
                     wait_on_rate_limit=True,
                     wait_on_rate_limit_notify=True)
    top_10 = twitter_trend(api, 10)
    if request.method == 'POST':
        tweet_query = request.form['content']
        tweet_number = int(request.form['number'])
        texts = []

        search_words = tweet_query
        new_search = search_words + " -filter:retweets"
        search = tweepy.Cursor(api.search,
                               q=new_search,
                               lang="th",
                               tweet_mode="extended").items(tweet_number)
        texts = [item.full_text for item in search]
        clean_list = text_cleaning(texts)
        #return clean_list[3]
        term_weighting = tfidf_model.transform(clean_list)

        # from pythainlp.tag import pos_tag_sents
        # pos = pos_tag_sents(word_list,corpus='orchid_ud')
        # keep_tag = ['VERB', 'ADJ', 'ADV', 'INTJ', 'AUX']
        # pos_list = []
        # for sent in pos:
        #     dt_tags = [t[0] for t in sent if t[1] in keep_tag]
        #     pos_list.append(dt_tags)

        # clean_list = delete_stop(word_list)
        # new = tfidf_model.transform(clean_list)
        new = term_weighting.toarray()
        new = [n[support] for n in new]

        pred = clf_model.predict(new)
        #pred = clean_list
        #return pred[1]
        neg_count = 0
        pos_count = 0
        my_list = []
        with open("dataset.csv", mode='w', newline='', encoding='utf-8') as f:
            thewriter = csv.writer(f)
            thewriter.writerow(["text", "sentiment"])
            for i in range(len(texts)):
                my_list.append([texts[i], pred[i]])
                if pred[i] == 1.0:
                    neg_count = neg_count + 1
                    thewriter.writerow(
                        [texts[i].replace('\n', ''), 'Negative'])
                else:
                    pos_count = pos_count + 1
                    thewriter.writerow(
                        [texts[i].replace('\n', ''), 'Positive'])
        custom_style = Style(colors=('#800000', '#3CB371'))
        pie_chart = pygal.Pie(style=custom_style)
        pie_chart.title = 'Sentiment ratio'
        pie_chart.add('Negative', neg_count)
        pie_chart.add('Positive', pos_count)

        chart_data = pie_chart.render_data_uri()

        #return str(len(top_10))
        return render_template('index.html',
                               tasks=my_list,
                               trends=top_10,
                               keyword=tweet_query,
                               chart=chart_data)

    else:

        #tasks = Todo.query.order_by(Todo.date_created).all()
        top_10 = twitter_trend(api, 10)
        #return top_10[0]
        return render_template('index.html', tasks=[], trends=top_10)
Example #22
0
def main():
    """test"""
    file = open('D:/project/1.csv')
    data = (csv.reader(file))
    listsum_reading = []
    listmen_reading_bkk = []
    listwomen_reading_bkk = []
    listmen_unreading_bkk = []
    listwomen_unreading_bkk = []
    for i in data:
        listsum_reading.append(i[5])
        listmen_reading_bkk.append(i[6])
        listwomen_reading_bkk.append(i[7])
        listmen_unreading_bkk.append(i[10])
        listwomen_unreading_bkk.append(i[11])

    line_chart = pygal.StackedLine(fill=True,
                                   interpolate='cubic',
                                   style=DarkStyle)
    line_chart = pygal.Bar()
    line_chart.title = ' Number of population, aged 6 years and over by reading'
    line_chart.x_labels = [
        'กรุงเทพมหานคร', 'ภาคกลาง', 'ภาคเหนือ', 'ภาคตะวันออกเฉียงเหนือ',
        'ภาคใต้'
    ]
    line_chart.add('6-14 ปี', [
        int(listsum_reading[9]),
        int(listsum_reading[26]),
        int(listsum_reading[42]),
        int(listsum_reading[57]),
        int(listsum_reading[71])
    ])
    line_chart.add('15-24 ปี', [
        int(listsum_reading[10]),
        int(listsum_reading[27]),
        int(listsum_reading[43]),
        int(listsum_reading[58]),
        int(listsum_reading[72])
    ])
    line_chart.add('25-39 ปี', [
        int(listsum_reading[11]),
        int(listsum_reading[28]),
        int(listsum_reading[44]),
        int(listsum_reading[59]),
        int(listsum_reading[73])
    ])
    line_chart.add('40-59 ปี', [
        int(listsum_reading[12]),
        int(listsum_reading[29]),
        int(listsum_reading[45]),
        int(listsum_reading[60]),
        int(listsum_reading[74])
    ])
    line_chart.add('60andover', [
        int(listsum_reading[13]),
        int(listsum_reading[30]),
        int(listsum_reading[46]),
        int(listsum_reading[61]),
        int(listsum_reading[75])
    ])
    line_chart.render_to_file('bar_area_1.svg')

    bkk_pie = pygal.Pie(inner_radius=.4)
    bkk_pie.title = 'Number of population, reading and unreading , age 6-14 yearsold'
    bkk_pie.add('ชาย อ่าน', int(listmen_reading_bkk[9]))
    bkk_pie.add('หญิง อ่าน', int(listwomen_reading_bkk[9]))
    bkk_pie.add('ชาย ไม่อ่าน', int(listmen_unreading_bkk[9]))
    bkk_pie.add('หญิง ไม่อ่าน', int(listwomen_unreading_bkk[9]))
    bkk_pie.render_to_file('bkk.svg')
Example #23
0
def data_visualisation():

    conn = psycopg2.connect(
        " dbname='inventory_management_system' user='******' host='localhost' port='5432' password='******' "
    )

    cur = conn.cursor()
    cur.execute("""
    SELECT type, count(type) 
    FROM public.inventories
    group by type;
    """)

    product_service = cur.fetchall()
    print(product_service)

    pie_chart = pygal.Pie()
    '''my_pie_data = [
        ('Nairobi', 63),
        ('Mombasa', 20),
        ('Kilifi', 17),
        ('Machakos', 30),
        ('Kiambu', 7)]'''

    pie_chart.title = 'Ratio of product and service'
    for each in product_service:
        pie_chart.add(each[0], each[1])

    pie_data = pie_chart.render_data_uri()

    #end of pie chart

    #start of line graph

    cur.execute("""
    SELECT EXTRACT(MONTH FROM s.created_at) as sales_month, sum(quantity*selling_price) as total_sales
    from sales as s
    join inventories as i on s.invid = i.id
	group by sales_month 
	order by sales_month asc;
    """)
    monthly_sales = cur.fetchall()
    print(monthly_sales)

    data = [{
        'month': 'January',
        'total': 22
    }, {
        'month': 'February',
        'total': 27
    }, {
        'month': 'March',
        'total': 23
    }, {
        'month': 'April',
        'total': 20
    }, {
        'month': 'May',
        'total': 12
    }, {
        'month': 'June',
        'total': 32
    }, {
        'month': 'July',
        'total': 42
    }, {
        'month': 'August',
        'total': 72
    }, {
        'month': 'September',
        'total': 52
    }, {
        'month': 'October',
        'total': 42
    }, {
        'month': 'November',
        'total': 92
    }, {
        'month': 'December',
        'total': 102
    }]

    a = []
    b = []
    for each in monthly_sales:

        a.append(each[0])
        b.append(each[1])

    line_chart = pygal.Line()
    line_chart.title = 'Total Sales in the year 2019'
    line_chart.x_labels = a
    line_chart.add('Total Sales', b)

    line_data = line_chart.render_data_uri()

    return render_template('chart.html', pie=pie_data, line=line_data)
Example #24
0
import pandas as pd
import pygal as pg
import numpy as np
from pygal.style import DarkStyle

reading = pd.read_csv('../DATA/css.csv')
pie_chart = pg.Pie(style=DarkStyle)
pie_chart.title = 'Domestic Crime'
dct = {}
data = np.array(
    reading.groupby('Domestic', as_index=False).count()[['Domestic',
                                                         'Date']]).tolist()
for i in data:
    pie_chart.add(str(i[0]), i[1])
pie_chart.render_to_file('../svg_grap/Domestic.svg')
Example #25
0
    def generate(self,
                 from_date=None,
                 to_date="Today",
                 from_time=None,
                 to_time="Now"):
        if from_time:
            self.from_time = abs(from_time)
        if from_date:
            self.from_date = abs(from_date)
        if from_date and to_date:
            if from_date == to_date and from_date == "Today":
                # Read the whole text.
                self.to_date = datetime.date.today()
                self.date_list = [(self.to_date - datetime.timedelta(x))
                                  for x in range(-24, 1)]
            elif isinstance(from_date, int) and to_date == "Today":
                self.to_date = datetime.date.today()
                self.date_list = [(self.to_date + datetime.timedelta(x))
                                  for x in range(from_date, 1)]
        if from_time and to_time:
            if isinstance(from_time, int) and to_time == "Now":
                self.to_date = datetime.datetime.now().replace(
                    tzinfo=tz.tzlocal())
                self.date_list = [
                    (self.to_date +
                     datetime.timedelta(hours=x)).replace(tzinfo=tz.tzlocal())
                    for x in range(from_time, 1)
                ]
        tw_count = []
        quotes_count = []
        retweet_count = []
        all_tweet_count = []
        all_mention_count = []
        all_media_count = []
        for index, item in enumerate(self.date_list):
            if index == len(self.date_list) - 1:
                break
            tweets = Analysis.objects(
                Q(create_date__gte=self.date_list[index])
                & Q(create_date__lt=self.date_list[index + 1])
                & Q(retweet_count=0)).all()
            tw_count.append(tweets.count())
            # count quotes
            quotes = Analysis.objects(
                Q(create_date__gte=self.date_list[index])
                & Q(create_date__lt=self.date_list[index + 1])
                & Q(is_quote_status=True)).all()
            quotes_count.append(quotes.count())
            # count retweet
            retweet = Analysis.objects(
                Q(create_date__gte=self.date_list[index])
                & Q(create_date__lt=self.date_list[index + 1])
                & Q(retweet_count__gt=0)).all()
            retweet_count.append(retweet.count())
            # user mention #
            all_mention = Analysis.objects(
                Q(create_date__gte=self.date_list[index])
                & Q(create_date__lt=self.date_list[index + 1])
                & Q(user_mentions__ne=[])).all()
            all_mention_count.append(all_mention.count())
            # Media
            all_media = Analysis.objects(
                Q(create_date__gte=self.date_list[index])
                & Q(create_date__lt=self.date_list[index + 1])
                & Q(media_type__ne='')).all()
            all_media_count.append(all_media.count())
            # all tweet
            all_tweet = Analysis.objects(
                Q(create_date__gte=self.date_list[index])
                & Q(create_date__lt=self.date_list[index + 1])).all()
            all_tweet_count.append(all_tweet.count())

        date_chart = pygal.Bar(margin=100,
                               height=1000,
                               width=1000,
                               x_label_rotation=90)
        date_chart.x_labels = map(
            lambda d: jdatetime.datetime.fromgregorian(datetime=d).strftime(
                '%m/%d - %H:%m ')
            if isinstance(d, datetime.datetime) else jdatetime.date.
            fromgregorian(date=d).strftime('%a %m/%d'), self.date_list[:-1])
        date_chart.title = 'Count  of ALL'
        date_chart.add("all_tweet_count", all_tweet_count)
        date_chart.add("tw", tw_count)
        date_chart.add("retweet", retweet_count)
        date_chart.add("quotes", quotes_count)
        date_chart.add("mention", all_mention_count)
        date_chart.add("all_media", all_media_count)

        # # create pie chart
        self.all_tweets_count = sum(all_tweet_count)
        pie_chart = pygal.Pie(inner_radius=.4)
        pie_chart.title = 'From All  - More than 100% - {} tweet'.format(
            self.all_tweets_count)
        pie_chart.add(
            'tw {0:.2f} %'.format(100 * sum(tw_count) / self.all_tweets_count),
            100 * float(sum(tw_count)) / float(self.all_tweets_count))

        pie_chart.add(
            'quotes {0:.2f} %'.format(100 * sum(quotes_count) /
                                      self.all_tweets_count),
            100 * float(sum(quotes_count)) / float(self.all_tweets_count))

        pie_chart.add(
            'retweet {0:.2f} %'.format(100 * sum(retweet_count) /
                                       self.all_tweets_count),
            100 * float(sum(retweet_count)) / float(self.all_tweets_count))

        pie_chart.add(
            'mention {0:.2f} %'.format(100 * sum(all_mention_count) /
                                       self.all_tweets_count),
            100 * float(sum(all_mention_count)) / float(self.all_tweets_count))
        pie_chart.add(
            'media {0:.2f} %'.format(100 * sum(all_media_count) /
                                     self.all_tweets_count),
            100 * float(sum(all_media_count)) / float(self.all_tweets_count))

        # create file
        filename = datetime.datetime.today().strftime('%Y-%m-%d-%H:%m')
        date_chart.render_to_png(path.join(self.d,
                                           'tmp/' + filename + '-chart.png'),
                                 dpi=600)
        self.file_names.append(
            path.join(self.d, 'tmp/' + filename + '-chart.png'))
        pie_chart.render_to_png(path.join(self.d, 'tmp/' + filename +
                                          '-pie-chart.png'),
                                dpi=300)
        self.file_names.append(
            path.join(self.d, 'tmp/' + filename + '-pie-chart.png'))
Example #26
0
#!/user/bin/python3
# -*- coding: utf-8 -*-

# Donut 圆环图

import pygal

# inner_radius 内半径
donut_chart = pygal.Pie(inner_radius=.75)
# 内半径越大 圆环图就越像一个环 .4 -> .75 .75的时候就很像一个环
donut_chart.title = 'Browser usage in February 2012 (in %)'
donut_chart.add('IE', 19.5)
donut_chart.add('Firefox', 36.6)
donut_chart.add('Chrome', 36.3)
donut_chart.add('Safari', 4.5)
donut_chart.add('Opera', 2.3)
donut_chart.render_to_file('./image/pie_donut.svg')
bar_chart.render_to_file("images/q9.svg")
print("question nine executed successfully")



query = [{"$group":{"_id":"$state", "count":{"$sum":1}}}, {"$sort":{"count":-1}}]

cursor = customersCollection.aggregate(query)
customers2 = []
customers = []

for query in cursor:
    customers2.append(query["_id"])
    customers.append(query["count"])

bar_chart = pygal.Pie()
bar_chart.title = "customers by state"
bar_chart.x_labels = map(str,customers)
bar_chart.add("payments collected",customers)
bar_chart.render_to_file("images/q10.svg")
print("question ten executed successfully")




query = [{"$group":{"_id":"$reportsTo","count":{"$sum":1}}},{"$sort":{"count":1}}]
cursor = employeesCollection.aggregate(query)
employee2 = []
employee = []

for query in cursor:
Example #28
0
def index():
    user_id = session.get('user_id')
    form = login_form.LoginForm()
    db = GraficoModel()
    now = datetime.now()
    ano = now.strftime('%Y')
    mes = now.strftime('%m')

    este_mes = db.get_levyings_sum(mes)
    if este_mes[0]:
        este_mes2 = este_mes[0]
        este_mes = real_br_money_mask(este_mes[0])
    else:
        este_mes = '0'
        este_mes2 = 0.0

    if mes != 1:
        mes = str(int(mes) - 1)
        ultimo_mes = db.get_levyings_sum(mes)
        if ultimo_mes[0]:
            ultimo_mes2 = ultimo_mes[0]
            ultimo_mes = real_br_money_mask(ultimo_mes[0])
        else:
            ultimo_mes = '0'
            ultimo_mes2 = 0.0

    else:
        ultimo_mes = db.get_levyings_sum(mes)
        ultimo_mes = real_br_money_mask(ultimo_mes[0])
        ultimo_mes2 = ultimo_mes[0]

    if este_mes2 > ultimo_mes2:
        text_info = "text-info"
        text_primary = "text-primary"
    else:
        text_info = "text-primary"
        text_primary = "text-info"

    result = db.get_numero_empresas(user_id)
    numero_clientes = result[0]
    if not numero_clientes:
        numero_clientes = "0"

    total_clientes = result[1]
    porcentagem = int(ceil((numero_clientes * 100) / total_clientes))
    porcentagem = porcentagem - (porcentagem % 10)

    result = db.get_tributacao('SIMPLES NACIONAL', 'PRESUMIDO', 'REAL',
                               user_id)
    chart = pygal.Pie(style=CleanStyle)
    chart.force_uri_protocol = 'http'
    chart.title = 'Faturamento por Cliente'
    chart.add('Simples Nacional', result[0])
    chart.add('Lucro Presumido', result[1])
    chart.add('Lucro Real', result[2])
    graph_data = chart.render_data_uri()

    result = db.get_ocorrencias(user_id)
    custom_style = Style(colors=('#9e0808', '#041e70', '#04753c'))
    chart = pygal.Bar(style=custom_style)
    chart.force_uri_protocol = 'http'
    chart.title = 'Ocorrências em Aberto / Fechado / Andamento'
    chart.add('Aberto', result[0])
    chart.add('Andamento', result[2])
    chart.add('Fechado', result[1])
    graph_data2 = chart.render_data_uri()

    result1 = db.get_cobrancas('Continuo')
    result2 = db.get_cobrancas('Nao_Continuo')
    chart = pygal.Bar(style=CleanStyle)
    chart.force_uri_protocol = 'http'
    chart.title = 'Cobranças, ano ' + str(ano) + ':'
    chart.x_labels = ('Jan', 'Fev', 'Mar', 'Abr', 'Mai', 'Jun', 'Jul', 'Ago',
                      'Set', 'Out', 'Nov', 'Dez')
    chart.add('Contínuo', result1)
    chart.add('Não Contínuo', result2)
    graph_data3 = chart.render_data_uri()

    return render_template('index/index.html',
                           form=form,
                           graph_data=graph_data,
                           graph_data2=graph_data2,
                           graph_data3=graph_data3,
                           total_clientes=total_clientes,
                           numero_clientes=numero_clientes,
                           porcentagem=porcentagem,
                           este_mes=este_mes,
                           ultimo_mes=ultimo_mes,
                           flag_index=1,
                           text_info=text_info,
                           text_primary=text_primary)
Example #29
0
import pygal
'''这个是半圆饼图'''
# 写入数据
data = [2365,5414]
# 写入数据对应的标签,如果想在饼图上显示具体数值,在对应的标签后填入相应数值
labels = ['男生','女生']
# 创建pygal.Pie对象(饼图)
pie = pygal.Pie()
# 采用循环为饼图添加数据
for i, per in enumerate(data):
    pie.add(labels[i], per)
# 标题
pie.title = '男女比例'
# 设置将图例放在底部
pie.legend_at_bottom = True
# 设置内圈的半径长度
pie.inner_radius = 0.4
# 创建半圆数据图
pie.half_pie = True
# 指定将数据图输出到SVG文件中,保存到本地
pie.render_to_file('language_percent1.svg')
Example #30
0
 def __init__(self, **kwargs):
     self.chart = pygal.Pie(**kwargs)
     self.chart.title = 'Listed properties'