def testBasics(self): self.test('clips', clips('test/testBasics.py', limit=12), 'test/t....ics.py') self.test('halfs2', halfs2('test/testBasics.py'), "('test/test', 'Basics.py')") for f, x, y, s in ( (0, True, False, True), (0.0, True, False, True), (1, True, False, True), (1.0, True, False, True), (1e300, True, True, True), (-1e300, True, True, True), (1e1234, False, False, True), # == INF (INF, False, False, True), (NAN, False, False, True), (NEG0, True, False, True)): t = str(f) self.test('isfinite(%s)' % (t, ), isfinite(f), x) self.test('isint(%s)' % (t, ), isint(f, both=True), x) self.test('isint(%s+0.5)' % (t, ), isint(f + 0.5, both=True), y) self.test('isscalar(%s)' % (t, ), isscalar(f), s) self.test('isneg0(NEG0)', isneg0(NEG0), True) self.test('isneg0(0.0)', isneg0(0.0), False) self.test('isneg0(INF)', isneg0(INF), False) self.test('isneg0(NAN)', isneg0(NAN), False) self.test('type(%s)' % ('C.r_o', ), type(C.r_o).__name__, property_RO.__name__) c = C() self.test('type(%s)' % ('c.r_o', ), type(c.r_o), bool) self.test('c.r_o', c.r_o, True) try: c.r_o = False self.test('c.r_o = False', c.r_o, AttributeError.__name__) except AttributeError as x: self.test('c.r_o = False', str(x), str(x)) except Exception as x: self.test('c.r_o = False', repr(x), AttributeError.__name__) a, b = splice(range(10)) # PYCHOK False self.test('splice', (a, b), map1(type(a), (0, 2, 4, 6, 8), (1, 3, 5, 7, 9))) a, b, c = splice(range(10), n=3) # PYCHOK False self.test('splice', (a, b, c), map1(type(a), (0, 3, 6, 9), (1, 4, 7), (2, 5, 8))) a, b, c = splice(range(10), n=3, fill=-1) # PYCHOK False self.test('splice', (a, b, c), map1(type(a), (0, 3, 6, 9), (1, 4, 7, -1), (2, 5, 8, -1))) t = tuple(splice(range(12), n=5)) # PYCHOK False self.test( 'splice', t, map1(type(t[0]), (0, 5, 10), (1, 6, 11), (2, 7), (3, 8), (4, 9)))
def testFmath(self): # see function _p2 in ellipsoidalVincenty.py for x in (0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000): p = fpolynomial(x, 16384, 4096, -768, 320, -175) / 16384.0 a = x / 16384.0 * (4096 + x * (-768 + x * (320 - 175 * x))) + 1 self.test('fpolynomialA', p, a) p = fpolynomial(x, 0, 256, -128, 74, -47) / 1024.0 b = x / 1024.0 * (256 + x * (-128 + x * (74 - 47 * x))) self.test('fpolynomialB', p, b) # U{Neumaier<http://wikipedia.org/wiki/Kahan_summation_algorithm>} t = 1, 1e101, 1, -1e101 for _ in range(10): s = float(len(t) / 2) # number of ones self.test('sum', sum(t), s, known=True) self.test('fsum', fsum(t), s) f = Fsum() f.fadd2(t) self.test('Fsum', f.fsum(), s) t += t p = fpowers(2, 10) # PYCHOK false! self.test('fpowers', len(p), 10) self.test('fpowers', p[0], 2) self.test('fpowers', p[9], 2**10) p = fpowers(2, 10, 4) # PYCHOK false! self.test('fpowers', len(p), 4) self.test('fpowers', p[0], 2**4) self.test('fpowers', p[3], 2**10) p = fpowers(2, 10, 3) # PYCHOK false! self.test('fpowers', len(p), 4) self.test('fpowers', p[0], 2**3) self.test('fpowers', p[3], 2**9) self.test('isfinite', isfinite(0), 'True') self.test('isfinite', isfinite(1e300), 'True') self.test('isfinite', isfinite(-1e300), 'True') self.test('isfinite', isfinite(1e1234), 'False') self.test('isfinite', isfinite(float('inf')), 'False') self.test('isfinite', isfinite(float('nan')), 'False')
def testFmath(self): # see function _p2 in ellipsoidalVincenty.py for i in range(-16, 17): x = pow(1.0, i) p = fpolynomial(x, 16384, 4096, -768, 320, -175) / 16384.0 a = x / 16384.0 * (4096 + x * (-768 + x * (320 - 175 * x))) + 1 self.test('fpolynomialA', p, a) h = fhorner(x, 16384, 4096, -768, 320, -175) / 16384.0 self.test('fhornerA', h, p) p = fpolynomial(x, 0, 256, -128, 74, -47) / 1024.0 b = x / 1024.0 * (256 + x * (-128 + x * (74 - 47 * x))) self.test('fpolynomialB', p, b) h = fhorner(x, 0, 256, -128, 74, -47) / 1024.0 self.test('fhornerB', h, p) # U{Neumaier<http://WikiPedia.org/wiki/Kahan_summation_algorithm>} t = 1, 1e101, 1, -1e101 for _ in range(10): s = float(len(t) / 2) # number of ones self.test('sum', sum(t), s, known=True) self.test('fsum', fsum(t), s) self.test('Fsum', Fsum().fsum(t), s) t += t # <http://code.ActiveState.com/recipes/393090> t = 1.00, 0.00500, 0.00000000000100 s = 1.00500000000100 self.test('sum', sum(t), s, known=True) self.test('fsum', fsum(t), s) self.test('Fsum', Fsum().fsum(t), s) # <http://GitHub.com/python/cpython/blob/master/Modules/mathmodule.c> t = 1e-16, 1, 1e16 s = '1.0000000000000002e+16' # half-even rounded self.test('fsum', fsum(t), s, fmt='%.16e') self.test('Fsum', Fsum().fsum(t), s, fmt='%.16e') # <http://GitHub.com/ActiveState/code/blob/master/recipes/Python/ # 393090_Binary_floating_point_summatiaccurate_full/recipe-393090.py> for _ in range(100): t = [7, 1e100, -7, -1e100, -9e-20, 8e-20] * 10 s = 0 for _ in range(20): v = gauss(0, random())**7 - s s += v t.append(v) shuffle(t) s = fsum(t) self.test('sum', sum(t), s, known=True) self.test('fsum', s, s) n = len(t) // 2 f = Fsum() f.fsum(t[:n]) # test ps self.test('Fsum', f.fsum(t[n:]), s) f = Fsum() f.fsum(t[n:]) # test ps self.test('Fsum', f.fsum(t[:n]), s) p = fpowers(2, 10) # PYCHOK false! self.test('fpowers', len(p), 10) self.test('fpowers', p[0], 2) self.test('fpowers', p[9], 2**10) p = fpowers(2, 10, 4) # PYCHOK false! self.test('fpowers', len(p), 4) self.test('fpowers', p[0], 2**4) self.test('fpowers', p[3], 2**10) p = fpowers(2, 10, 3) # PYCHOK false! self.test('fpowers', len(p), 4) self.test('fpowers', p[0], 2**3) self.test('fpowers', p[3], 2**9) self.test('isfinite(0)', isfinite(0), 'True') self.test('isfinite(1e300)', isfinite(1e300), 'True') self.test('isfinite(-1e300)', isfinite(-1e300), 'True') self.test('isfinite(1e1234)', isfinite(1e1234), 'False') self.test('isfinite(INF)', isfinite(INF), 'False') self.test('isfinite(NAN)', isfinite(NAN), 'False') self.test('isfinite(NEG0)', isfinite(NEG0), 'True') self.test('isneg0(NEG0)', isneg0(NEG0), True) self.test('isneg0(0.0)', isneg0(0.0), False) self.test('isneg0(NAN)', isneg0(NAN), False) for _, E in sorted(Ellipsoids.items()): Ah = E.a / (1 + E.n) * fhorner(E.n**2, 1., 1. / 4, 1. / 64, 1. / 256, 25. / 16384) self.test(E.name, Ah, E.A, fmt='%.8f') Ah = E.a / (1 + E.n) * (fhorner(E.n**2, 16384, 4096, 256, 64, 25) / 16384) self.test(E.name, Ah, E.A, fmt='%.8f') Ah = E.a / (1 + E.n) * fhorner(E.n**2, 1., 1. / 4, 1. / 64, 1. / 256, 25. / 16384, 49. / 65536) self.test(E.name, Ah, E.A, fmt='%.10f') Ah = E.a / (1 + E.n) * ( fhorner(E.n**2, 65536, 16384, 1024, 256, 100, 49) / 65536) self.test(E.name, Ah, E.A, fmt='%.10f') t = 1, 1e101, 1, -1e101 for _ in range(10): a = Fsum(*t) b = a.fcopy() c = a + b self.test('FSum+', c.fsum(), a.fsum() + b.fsum()) c -= a self.test('FSum-', c.fsum(), b.fsum()) c -= b self.test('FSum-', c.fsum(), 0.0) b = a * 2 a += a self.test('FSum*', a.fsum(), b.fsum()) t += t
def testFmath(self): # see function _p2 in ellipsoidalVincenty.py for x in (0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000): p = fpolynomial(x, 16384, 4096, -768, 320, -175) / 16384.0 a = x / 16384.0 * (4096 + x * (-768 + x * (320 - 175 * x))) + 1 self.test('fpolynomialA', p, a) p = fpolynomial(x, 0, 256, -128, 74, -47) / 1024.0 b = x / 1024.0 * (256 + x * (-128 + x * (74 - 47 * x))) self.test('fpolynomialB', p, b) # U{Neumaier<http://wikipedia.org/wiki/Kahan_summation_algorithm>} t = 1, 1e101, 1, -1e101 for _ in range(10): s = float(len(t) / 2) # number of ones self.test('sum', sum(t), s, known=True) self.test('fsum', fsum(t), s) f = Fsum() f.fadd2(t) self.test('Fsum', f.fsum(), s) t += t # <http://code.activestate.com/recipes/393090> t = 1.00, 0.00500, 0.00000000000100 s = 1.00500000000100 self.test('sum', sum(t), s, known=True) self.test('fsum', fsum(t), s) f = Fsum() f.fadd2(t) self.test('Fsum', f.fsum(), s) # <http://github.com/ActiveState/code/blob/master/recipes/Python/ # 393090_Binary_floating_point_summatiaccurate_full/recipe-393090.py> for _ in range(100): t = [7, 1e100, -7, -1e100, -9e-20, 8e-20] * 10 s = 0 for _ in range(20): v = gauss(0, random())**7 - s s += v t.append(v) shuffle(t) s = fsum(t) # self.test('fsum', s, s) f = Fsum() f.fadd2(t) self.test('Fsum', f.fsum(), s) p = fpowers(2, 10) # PYCHOK false! self.test('fpowers', len(p), 10) self.test('fpowers', p[0], 2) self.test('fpowers', p[9], 2**10) p = fpowers(2, 10, 4) # PYCHOK false! self.test('fpowers', len(p), 4) self.test('fpowers', p[0], 2**4) self.test('fpowers', p[3], 2**10) p = fpowers(2, 10, 3) # PYCHOK false! self.test('fpowers', len(p), 4) self.test('fpowers', p[0], 2**3) self.test('fpowers', p[3], 2**9) self.test('isfinite', isfinite(0), 'True') self.test('isfinite', isfinite(1e300), 'True') self.test('isfinite', isfinite(-1e300), 'True') self.test('isfinite', isfinite(1e1234), 'False') self.test('isfinite', isfinite(float('inf')), 'False') self.test('isfinite', isfinite(float('nan')), 'False')