Example #1
0
    def test_Convert(self):
        """
        """
        i = range(10)
        j = range(10)
        v = np.ones(10)

        # Construct SparseMap Matrix from python arrays
        A = pg.SparseMapMatrix(i, j, v)

        # Construct SparseMap -> CRS (compressed row storage)
        S = pg.SparseMatrix(A)

        # Construct CRS -> SparseMap
        A2 = pg.SparseMapMatrix(S)

        # all should by identity matrix
        np.testing.assert_equal(A2.getVal(1,1), 1.0)
        np.testing.assert_equal(sum(S * np.ones(S.cols())), S.rows())
        np.testing.assert_equal(sum(A2 * np.ones(A2.cols())), A2.rows())


        MAP1 = pg.SparseMapMatrix(r=3, c=15)
        CSR = pg.SparseMatrix(MAP1)
        MAP2 = pg.SparseMapMatrix(CSR)

        v3 = pg.RVector(3)
        v15 = pg.RVector(15)

        np.testing.assert_equal((MAP1*v15).size(), 3)
        np.testing.assert_equal((MAP1.transMult(v3)).size(), 15)

        np.testing.assert_equal((CSR*v15).size(), 3)
        np.testing.assert_equal((CSR.transMult(v3)).size(), 15)

        np.testing.assert_equal(MAP1.cols(), MAP2.cols())
        np.testing.assert_equal(CSR.cols(), MAP1.cols())
        np.testing.assert_equal(CSR.rows(), MAP1.rows())
        np.testing.assert_equal(MAP1.rows(), MAP2.rows())

        # testing SparseMatrix to Numpy
        csr = pg.SparseMapMatrix(r=4, c=5)
        check_rows = [0, 0, 1, 2, 3]
        check_cols = [0, 1, 2, 3, 4]
        check_csr_rows = [0, 1, 2, 3, 4]
        check_col_s_e = [0, 2, 3, 4, 5, 5]
        check_vals = np.array([1.0, 3, np.pi, 1e-12, -1.12345e13])
        for i in range(len(check_rows)):
            csr.addVal(check_rows[i], check_cols[i], check_vals[i])

        r, c, v = pg.utils.sparseMatrix2Array(csr)
        np.testing.assert_allclose(r, check_csr_rows)
        np.testing.assert_allclose(c, check_col_s_e)
        np.testing.assert_allclose(v, check_vals)

        r2, c2, v2 = pg.utils.sparseMatrix2Array(pg.SparseMatrix(csr),
                                                 getInCRS=False)
        np.testing.assert_allclose(r2, check_rows)
        np.testing.assert_allclose(c2, check_cols)
        np.testing.assert_allclose(v2, check_vals)
Example #2
0
    def test_Operators(self):
        colIds = range(10)
        rowIds = range(10)
        vals = np.ones(10)
        A = pg.SparseMapMatrix(colIds, rowIds, vals)
        S = pg.SparseMatrix(A)

        S2 = S + S * 0.1 * 0.3
    def __init__(self, mesh, pos, **kwargs):
        """Init with mesh and some positions that are converted into ids."""
        super().__init__(**kwargs)
        self.setMesh(mesh)
        self.ind = [mesh.findCell(po).id() for po in pos]
        self.J = pg.SparseMapMatrix()
        self.J.resize(len(self.ind), mesh.cellCount())
        for i, ii in enumerate(self.ind):
            self.J.setVal(i, ii, 1.0)

        self.setJacobian(self.J)
Example #4
0
    def test_Misc(self):
        D = pg.SparseMapMatrix(3, 4)
        for i in range(D.rows()):
            for j in range(D.cols()):
                D.setVal(i, j, 1.0)

        np.testing.assert_allclose(D.col(2), pg.Vector(D.rows(), 1.0))
        np.testing.assert_allclose(D.row(2), pg.Vector(D.cols(), 1.0))

        D.cleanRow(1)
        np.testing.assert_allclose(D.col(2), [1.0, 0.0, 1.0])

        D.cleanCol(1)
        np.testing.assert_allclose(D.row(2), [1.0, 0.0, 1.0, 1.0])
Example #5
0
    def createConstraints(self):
        """Create constraint matrix (special type for this)."""
        if isinstance(super().createConstraints(), pg.SparseMapMatrix):
            self.C1 = pg.SparseMapMatrix(self.constraintsRef())
            # make a copy because it will be overwritten
        else:
            self.C1 = self.constraints()

        self.C = pg.matrix.FrameConstraintMatrix(self.C1, len(self.fops),
                                                 self.scalef)
        self.setConstraints(self.C)
        # cw = self.regionManager().constraintWeights()
        # self.regionManager().setConstraintsWeights(np.tile(cw, self.nf))
        ## switch off automagic inside core.inversion which checks for local modeltransform of the regionManager
        self.regionManager().setLocalTransFlag(False)
Example #6
0
    def test_BlockMatrix(self):
        A = pg.SparseMapMatrix(2, 2)
        A.setVal(0, 0, 1.0)

        B = pg.BlockMatrix()
        B.add(A, 0, 0)

        np.testing.assert_allclose(B.row(0), [1.0, 0.0], rtol=1e-10)
        B.add(A, 0, 0)
        np.testing.assert_allclose(B.row(0), [2.0, 0.0], rtol=1e-10)

        C = B.sparseMapMatrix()
        np.testing.assert_allclose(C.row(0), [2.0, 0.0], rtol=1e-10)

        B.add(A, 10, 10)
        print(B)
Example #7
0
 def __init__(self, frequency=100., verbose=False):
     super().__init__(verbose)
     self.frequency = frequency
     self.iMat = pg.SparseMapMatrix()
Example #8
0
    def test_Convert(self):
        """
        """
        colIds = range(10)
        rowIds = range(10)
        vals = np.ones(10)

        # Construct SparseMap Matrix from python arrays
        A = pg.SparseMapMatrix(colIds, rowIds, vals)

        # Construct SparseMap -> CRS (compressed row storage)
        S = pg.SparseMatrix(A)

        # Construct CRS -> SparseMap
        A2 = pg.SparseMapMatrix(S)

        # all should by identity matrix
        np.testing.assert_equal(A2.getVal(1,1), 1.0)
        np.testing.assert_equal(sum(S * np.ones(S.cols())), S.rows())
        np.testing.assert_equal(sum(A2 * np.ones(A2.cols())), A2.rows())

        MAP1 = pg.SparseMapMatrix(r=3, c=15)
        CSR = pg.SparseMatrix(MAP1)
        MAP2 = pg.SparseMapMatrix(CSR)

        v3 = pg.RVector(3)
        v15 = pg.RVector(15)

        np.testing.assert_equal((MAP1*v15).size(), 3)
        np.testing.assert_equal((MAP1.transMult(v3)).size(), 15)

        np.testing.assert_equal((CSR*v15).size(), 3)
        np.testing.assert_equal((CSR.transMult(v3)).size(), 15)

        np.testing.assert_equal(MAP1.cols(), MAP2.cols())
        np.testing.assert_equal(CSR.cols(), MAP1.cols())
        np.testing.assert_equal(CSR.rows(), MAP1.rows())
        np.testing.assert_equal(MAP1.rows(), MAP2.rows())

        # testing SparseMatrix to Numpy
        mm = pg.SparseMapMatrix(r=4, c=5)
        check_rows = [0, 0, 1, 2, 3]
        check_cols = [0, 1, 2, 3, 4]
        check_vals = np.array([1.0, 3, np.pi, 1e-12, -1.12345e13])

        for i in range(len(check_rows)):
            mm.addVal(check_rows[i], check_cols[i], check_vals[i])

        #pg.solver.showSparseMatrix(mm, full=True)
        check_csr_rows = [0, 1, 2, 3, 4]
        check_csr_colPtr = [0, 2, 3, 4, 5]

        check_csc_cols = [0, 0, 1, 2, 3]
        check_csc_rowptr = [0, 1, 2, 3, 4, 5]

        r1, c1, v1 = pg.utils.sparseMatrix2Array(mm)
        np.testing.assert_allclose(r1, check_csr_rows)
        np.testing.assert_allclose(c1, check_csr_colPtr)
        np.testing.assert_allclose(v1, check_vals)

        sciA1 = pg.utils.sparseMatrix2csr(pg.SparseMatrix(mm))
        np.testing.assert_equal(sciA1.indices, check_csr_rows)
        np.testing.assert_equal(sciA1.indptr, check_csr_colPtr)

        sciA1 = pg.utils.sparseMatrix2csr(mm)
        np.testing.assert_equal(sciA1.indices, check_csr_rows)
        np.testing.assert_equal(sciA1.indptr, check_csr_colPtr)

        r2, c2, v2 = pg.utils.sparseMatrix2Array(pg.SparseMatrix(mm),
                                                 getInCRS=False)
        np.testing.assert_allclose(r2, check_rows)
        np.testing.assert_allclose(c2, check_cols)
        np.testing.assert_allclose(v2, check_vals)

        A1 = pg.SparseMapMatrix(colIds, rowIds, vals)
        A2 = pg.SparseMapMatrix(colIds, rowIds, vals)
        A1 += A2

        sciA1 = pg.utils.sparseMatrix2csr(pg.SparseMatrix(mm))
        sciA2 = pg.utils.sparseMatrix2csr(mm)
        np.testing.assert_equal(len(sciA1.data), mm.size())
        np.testing.assert_equal(sciA1.data, sciA2.data)
        np.testing.assert_equal(sciA1.indices, sciA2.indices)
        np.testing.assert_equal(sciA1.indptr, sciA2.indptr)

        sciA1 = pg.utils.sparseMatrix2coo(pg.SparseMatrix(mm))
        sciA2 = pg.utils.sparseMatrix2coo(mm)
        np.testing.assert_equal(len(sciA1.data), mm.size())
        np.testing.assert_equal(sciA1.data, sciA2.data)
        np.testing.assert_equal(sciA1.row, sciA2.row)
        np.testing.assert_equal(sciA1.col, sciA2.col)