Example #1
0
    def meanfieldupdate(self, bias_model, weight_model, impulse_model):
        """
        Perform the mean field update.

        :param bias_model:
        :param weight_model:
        :param impulse_model:
        :return:
        """
        # If necessary, initialize arrays for mean field parameters
        if self.EZ is None:
            self.EZ = np.zeros((self.T, self.K, self.K, self.B))
        if self.EZ0 is None:
            self.EZ0 = np.copy(self.S).astype(np.float)

        # Uncomment this line to use python
        # self._mf_update_Z_python(bias_model, weight_model, impulse_model)

        # Use Cython
        exp_E_log_lambda0 = np.exp(bias_model.expected_log_lambda0())
        exp_E_log_W = np.exp(weight_model.expected_log_W())
        exp_E_log_g = np.exp(impulse_model.expected_log_g())

        mf_update_Z(self.EZ0, self.EZ, self.S, exp_E_log_lambda0, exp_E_log_W,
                    exp_E_log_g, self.F)
def test_parallel_parent_updates():
    """
    Just run the parent updates in a parallel loop and watch htop
    to make sure that all the cores are being used.
    :return:
    """

    T = 10000
    K = 100
    B = 3
    S = np.random.poisson(2.0, size=((T,K))).astype(np.int)

    EZ0 = np.zeros((T,K))
    EZ  = np.zeros((T,K,K,B))

    exp_E_log_lambda0 = np.random.gamma(1.0, 1.0, size=(K))
    exp_E_log_W       = np.random.gamma(1.0, 1.0, size=(K,K))
    exp_E_log_g       = np.random.gamma(1.0, 1.0, size=(K,K,B))
    F                 = np.random.gamma(1.0, 1.0, size=(T,K,B))

    for itr in xrange(1000):
        if itr % 10 == 0:
            print "Iteration\t", itr

        mf_update_Z(EZ0,
                    EZ,
                    S,
                    exp_E_log_lambda0,
                    exp_E_log_W,
                    exp_E_log_g,
                    F)
Example #3
0
    def _mf_update_Z(self):
        """
        Update the mean field parameters for the latent parents
        :return:
        """
        bias_model, weight_model, impulse_model = \
            self.model.bias_model, self.model.weight_model, self.model.impulse_model

        exp_E_log_lambda0 = np.exp(bias_model.expected_log_lambda0())
        exp_E_log_W = np.exp(weight_model.expected_log_W())
        exp_E_log_g = np.exp(impulse_model.expected_log_g())

        for k2, (Sk, Fk, EZk) in enumerate(zip(self.Ss, self.Fs, self.EZ)):
            mf_update_Z(k2, EZk, Sk, exp_E_log_lambda0, exp_E_log_W,
                        exp_E_log_g, Fk)

        self._check_EZ()
Example #4
0
    def _mf_update_Z(self):
        """
        Update the mean field parameters for the latent parents
        :return:
        """
        bias_model, weight_model, impulse_model = \
            self.model.bias_model, self.model.weight_model, self.model.impulse_model
        K, B = self.K, self.B

        exp_E_log_lambda0 = np.exp(bias_model.expected_log_lambda0())
        exp_E_log_W = np.exp(weight_model.expected_log_W())
        exp_E_log_g = np.exp(impulse_model.expected_log_g())

        for k2, (Sk, Fk, EZk) in enumerate(zip(self.Ss, self.Fs, self.EZ)):
            mf_update_Z(k2, EZk, Sk,
                        exp_E_log_lambda0,
                        exp_E_log_W,
                        exp_E_log_g,
                        Fk)

        self._check_EZ()