def setUp(self): self.prior = np.array([1, 0, 0]) self.transmat = np.matrix([[0, 1, 0], [0, 0, 1], [0, 0, 1]]) self.mu = np.zeros((1, 3, 2)) self.mu[0, :, 0] = [1, 2, 3] self.mu[0, :, 1] = [4, 5, 6] self.Sigma = np.zeros((1, 1, 3, 2)) self.Sigma[0, 0, :, 0] = 0.01 self.Sigma[0, 0, :, 1] = 0.01 self.mixmat = np.array([[.5, .5], [.5, .5], [.5, .5]]) self.obs, self.hidden = mhmm_sample(T=4, numex=100, initial_prob=self.prior, transmat=self.transmat, mu=self.mu, Sigma=self.Sigma, mixmat=self.mixmat) self.prior0, _ = mk_stochastic(np.random.rand(3)) self.transmat0, _ = mk_stochastic(np.random.rand(3, 3)) self.mu0 = np.zeros((1, 3, 2)) self.mu0[0, :, 0] = [1.5, 2.5, 3.5] self.mu0[0, :, 1] = [4.5, 5.5, 6.5] self.Sigma0 = np.zeros((1, 1, 3, 2)) self.Sigma0[0, 0, :, 0] = 1.0 self.Sigma0[0, 0, :, 1] = 1.0 self.mixmat0 = np.array([[.3, .7], [.3, .7], [.3, .7]])
def testMatrix(self): T = np.asmatrix(np.random.rand(3,3)) M, S = mk_stochastic(T) assert np.all(np.abs(np.sum(M,1)-np.matrix([[1], [1], [1]])) < 1e-3)
def fit(self, obs): obs = self._convertObs(obs) O = obs[0].shape[0] M = self.n_mix Q = self.n_components if 's' in self.init_params: self.startprob_, _ = normalise(self.startprob_) if 't' in self.init_params: self.transmat_, _ = mk_stochastic(self.transmat_) if 'm' in self.init_params or 'c' in self.init_params: mu0, Sigma0, weights0 = mixgauss_init( Q * M, obs, cov_type=self._covariance_type) if 'm' in self.init_params: self.means_ = np.transpose(np.reshape(mu0, (O, M, Q)), (0, 2, 1)) if 'c' in self.init_params: self.covars_ = np.transpose(np.reshape(Sigma0, (O, O, M, Q)), (0, 1, 3, 2)) mixmat0, _ = mk_stochastic(np.random.rand(Q, M)) self.LL, prior1, transmat1, mu1, Sigma1, mixmat1 = mhmm_em( data=obs, prior=self.startprob_, transmat=self.transmat_, mu=self.means_, Sigma=self.covars_, mixmat=mixmat0, max_iter=self.n_iter, thresh=self.thresh, cov_type=self._covariance_type, adj_trans='t' in self.params, adj_mix='w' in self.params, adj_mu='m' in self.params, adj_Sigma='c' in self.params) self.startprob_ = prior1 self.transmat_ = transmat1 self.means_ = mu1 self.covars_ = Sigma1 self.weights_ = mixmat1
def fit(self, obs): obs = self._convertObs(obs) O = obs[0].shape[0] M = self.n_mix Q = self.n_components if "s" in self.init_params: self.startprob_, _ = normalise(self.startprob_) if "t" in self.init_params: self.transmat_, _ = mk_stochastic(self.transmat_) if "m" in self.init_params or "c" in self.init_params: mu0, Sigma0, weights0 = mixgauss_init(Q * M, obs, cov_type=self._covariance_type) if "m" in self.init_params: self.means_ = np.transpose(np.reshape(mu0, (O, M, Q)), (0, 2, 1)) if "c" in self.init_params: self.covars_ = np.transpose(np.reshape(Sigma0, (O, O, M, Q)), (0, 1, 3, 2)) mixmat0, _ = mk_stochastic(np.random.rand(Q, M)) self.LL, prior1, transmat1, mu1, Sigma1, mixmat1 = mhmm_em( data=obs, prior=self.startprob_, transmat=self.transmat_, mu=self.means_, Sigma=self.covars_, mixmat=mixmat0, max_iter=self.n_iter, thresh=self.thresh, cov_type=self._covariance_type, adj_trans="t" in self.params, adj_mix="w" in self.params, adj_mu="m" in self.params, adj_Sigma="c" in self.params, ) self.startprob_ = prior1 self.transmat_ = transmat1 self.means_ = mu1 self.covars_ = Sigma1 self.weights_ = mixmat1
def setUp(self): self.prior = np.array([1, 0, 0]) self.transmat = np.matrix([[0, 1, 0], [0, 0, 1], [0, 0, 1]]) self.mu = np.zeros((1,3,2)) self.mu[0,:,0] = [1, 2, 3] self.mu[0,:,1] = [4, 5, 6] self.Sigma = np.zeros((1, 1, 3, 2)) self.Sigma[0,0,:,0] = 0.01 self.Sigma[0,0,:,1] = 0.01 self.mixmat = np.array([[.5,.5], [.5,.5], [.5,.5]]) self.obs, self.hidden = mhmm_sample(T=4, numex=100, initial_prob=self.prior, transmat=self.transmat, mu=self.mu, Sigma=self.Sigma, mixmat = self.mixmat) self.prior0, _ = mk_stochastic(np.random.rand(3)) self.transmat0, _ = mk_stochastic(np.random.rand(3,3)) self.mu0 = np.zeros((1,3,2)) self.mu0[0,:,0] = [1.5, 2.5, 3.5] self.mu0[0,:,1] = [4.5, 5.5, 6.5] self.Sigma0 = np.zeros((1, 1, 3, 2)) self.Sigma0[0,0,:,0] = 1.0 self.Sigma0[0,0,:,1] = 1.0 self.mixmat0 = np.array([[.3,.7], [.3,.7], [.3,.7]])
def testTensor(self): T = np.random.rand(3, 3, 3) M, S = mk_stochastic(T) assert np.all(np.abs(np.sum(M, 2) - np.ones((3, 3))) < 1e-3)
def testMatrix(self): T = np.asmatrix(np.random.rand(3, 3)) M, S = mk_stochastic(T) assert np.all(np.abs(np.sum(M, 1) - np.matrix([[1], [1], [1]])) < 1e-3)
def setUp(self): self.prior = np.array([1, 0, 0]) self.transmat = np.matrix([[0, 1, 0], [0, 0, 1], [0, 0, 1]]) self.mu = np.zeros((2, 3, 2)) self.mu[:, :, 0] = np.array([[1, 2, 3], [1, 2, 3]]) self.mu[:, :, 1] = np.array([[4, 5, 6], [4, 5, 6]]) self.Sigma = np.zeros((2, 2, 3, 2)) for i in range(3): self.Sigma[:, :, i, 0] = np.diag(np.ones((2, )) * 0.01) self.Sigma[:, :, i, 1] = np.diag(np.ones((2, )) * 0.01) self.mixmat = np.array([[.5, .5], [.5, .5], [.5, .5]]) try: with open('MhmmEM2DTestGaussInit.cache', 'rb') as f: cache = load(f) self.obs = cache['obs'] self.prior0 = cache['prior0'] self.transmat0 = cache['transmat0'] self.mu0 = cache['mu0'] self.Sigma0 = cache['Sigma0'] self.mixmat0 = cache['mixmat0'] except: self.obs, hidden = mhmm_sample(T=4, numex=100, initial_prob=self.prior, transmat=self.transmat, mu=self.mu, Sigma=self.Sigma, mixmat=self.mixmat) self.prior0, _ = mk_stochastic(np.random.rand(3)) self.transmat0, _ = mk_stochastic(np.random.rand(3, 3)) O = self.obs.shape[0] M = 2 Q = 3 mu0, Sigma0, weights0 = mixgauss_init(Q * M, self.obs, cov_type='diag') self.mu0 = np.transpose(np.reshape(mu0, (O, M, Q)), (0, 2, 1)) self.Sigma0 = np.transpose(np.reshape(Sigma0, (O, O, M, Q)), (0, 1, 3, 2)) self.mixmat0, _ = mk_stochastic(np.random.rand(Q, M)) cache = { 'obs': self.obs, 'prior0': self.prior0, 'transmat0': self.transmat0, 'mu0': self.mu0, 'Sigma0': self.Sigma0, 'mixmat0': self.mixmat0 } with open('MhmmEM2DTestGaussInit.cache', 'wb') as f: dump(cache, f) savemat('MhmmEM2DTestGaussInit.mat', cache)
def testVector(self): T = np.random.rand(1, 3)[0, :] M, S = mk_stochastic(T) assert np.abs(sum(M) - 1) < 1e-3
def setUp(self): self.prior = np.array([1, 0, 0]) self.transmat = np.matrix([[0, 1, 0], [0, 0, 1], [0, 0, 1]]) self.mu = np.zeros((2, 3, 2)) self.mu[:, :, 0] = np.array([[1, 2, 3], [1, 2, 3]]) self.mu[:, :, 1] = np.array([[4, 5, 6], [4, 5, 6]]) self.Sigma = np.zeros((2, 2, 3, 2)) for i in range(3): self.Sigma[:, :, i, 0] = np.diag(np.ones((2, )) * 0.01) self.Sigma[:, :, i, 1] = np.diag(np.ones((2, )) * 0.01) self.mixmat = np.array([[.5, .5], [.5, .5], [.5, .5]]) try: with open('MhmmEM2DTest.cache', 'rb') as f: cache = load(f) self.obs = cache['obs'] self.prior0 = cache['prior0'] self.transmat0 = cache['transmat0'] self.mu0 = cache['mu0'] self.Sigma0 = cache['Sigma0'] self.mixmat0 = cache['mixmat0'] except: self.obs, hidden = mhmm_sample(T=4, numex=100, initial_prob=self.prior, transmat=self.transmat, mu=self.mu, Sigma=self.Sigma, mixmat=self.mixmat) self.prior0, _ = mk_stochastic(np.random.rand(3)) self.transmat0, _ = mk_stochastic(np.random.rand(3, 3)) self.mu0 = np.zeros((2, 3, 2)) self.mu0[:, :, 0] = np.array([[1.5, 2.5, 3.5], [1.5, 2.5, 3.5]]) self.mu0[:, :, 1] = np.array([[4.5, 5.5, 6.5], [4.5, 5.5, 6.5]]) self.Sigma0 = np.zeros((2, 2, 3, 2)) for i in range(3): self.Sigma0[:, :, i, 0] = np.diag(np.ones((2, )) * 1.0) self.Sigma0[:, :, i, 1] = np.diag(np.ones((2, )) * 1.0) self.mixmat0 = np.array([[.2, .8], [.2, .8], [.2, .8]]) cache = { 'obs': self.obs, 'prior0': self.prior0, 'transmat0': self.transmat0, 'mu0': self.mu0, 'Sigma0': self.Sigma0, 'mixmat0': self.mixmat0 } with open('MhmmEM2DTest.cache', 'wb') as f: dump(cache, f) savemat('MhmmEM2DTest.mat', cache)
def testTensor(self): T = np.random.rand(3,3,3) M, S = mk_stochastic(T) assert np.all(np.abs(np.sum(M, 2)-np.ones((3,3)))<1e-3)
def setUp(self): self.prior = np.array([1, 0, 0]) self.transmat = np.matrix([[0, 1, 0], [0, 0, 1], [0, 0, 1]]) self.mu = np.zeros((2,3,2)) self.mu[:,:,0] = np.array([[1, 2, 3], [1, 2, 3]]) self.mu[:,:,1] = np.array([[4, 5, 6], [4, 5, 6]]) self.Sigma = np.zeros((2, 2, 3, 2)) for i in range(3): self.Sigma[:,:,i,0] = np.diag(np.ones((2,))*0.01) self.Sigma[:,:,i,1] = np.diag(np.ones((2,))*0.01) self.mixmat = np.array([[.5,.5], [.5,.5], [.5,.5]]) try: with open('MhmmEM2DTestGaussInit.cache', 'rb') as f: cache = load(f) self.obs = cache['obs'] self.prior0 = cache['prior0'] self.transmat0 = cache['transmat0'] self.mu0 = cache['mu0'] self.Sigma0 = cache['Sigma0'] self.mixmat0 = cache['mixmat0'] except: self.obs, hidden = mhmm_sample(T=4, numex=100, initial_prob=self.prior, transmat=self.transmat, mu=self.mu, Sigma=self.Sigma, mixmat = self.mixmat) self.prior0, _ = mk_stochastic(np.random.rand(3)) self.transmat0, _ = mk_stochastic(np.random.rand(3,3)) O = self.obs.shape[0] M = 2 Q = 3 mu0, Sigma0, weights0 = mixgauss_init(Q*M, self.obs, cov_type='diag') self.mu0 = np.transpose(np.reshape(mu0, (O, M, Q)), (0,2,1)) self.Sigma0 = np.transpose(np.reshape(Sigma0, (O, O, M, Q)), (0, 1, 3, 2)) self.mixmat0, _ = mk_stochastic(np.random.rand(Q,M)) cache = {'obs':self.obs, 'prior0':self.prior0, 'transmat0':self.transmat0, 'mu0':self.mu0, 'Sigma0':self.Sigma0, 'mixmat0':self.mixmat0} with open('MhmmEM2DTestGaussInit.cache', 'wb') as f: dump(cache, f) savemat('MhmmEM2DTestGaussInit.mat', cache)
def testVector(self): T = np.random.rand(1,3)[0,:] M, S = mk_stochastic(T) assert np.abs(sum(M)-1) < 1e-3
def setUp(self): self.prior = np.array([1, 0, 0]) self.transmat = np.matrix([[0, 1, 0], [0, 0, 1], [0, 0, 1]]) self.mu = np.zeros((2,3,2)) self.mu[:,:,0] = np.array([[1, 2, 3], [1, 2, 3]]) self.mu[:,:,1] = np.array([[4, 5, 6], [4, 5, 6]]) self.Sigma = np.zeros((2, 2, 3, 2)) for i in range(3): self.Sigma[:,:,i,0] = np.diag(np.ones((2,))*0.01) self.Sigma[:,:,i,1] = np.diag(np.ones((2,))*0.01) self.mixmat = np.array([[.5,.5], [.5,.5], [.5,.5]]) try: with open('MhmmEM2DTest.cache', 'rb') as f: cache = load(f) self.obs = cache['obs'] self.prior0 = cache['prior0'] self.transmat0 = cache['transmat0'] self.mu0 = cache['mu0'] self.Sigma0 = cache['Sigma0'] self.mixmat0 = cache['mixmat0'] except: self.obs, hidden = mhmm_sample(T=4, numex=100, initial_prob=self.prior, transmat=self.transmat, mu=self.mu, Sigma=self.Sigma, mixmat = self.mixmat) self.prior0, _ = mk_stochastic(np.random.rand(3)) self.transmat0, _ = mk_stochastic(np.random.rand(3,3)) self.mu0 = np.zeros((2,3,2)) self.mu0[:,:,0] = np.array([[1.5, 2.5, 3.5], [1.5, 2.5, 3.5]]) self.mu0[:,:,1] = np.array([[4.5, 5.5, 6.5], [4.5, 5.5, 6.5]]) self.Sigma0 = np.zeros((2, 2, 3, 2)) for i in range(3): self.Sigma0[:,:,i,0] = np.diag(np.ones((2,))*1.0) self.Sigma0[:,:,i,1] = np.diag(np.ones((2,))*1.0) self.mixmat0= np.array([[.2,.8], [.2,.8], [.2,.8]]) cache = {'obs':self.obs, 'prior0':self.prior0, 'transmat0':self.transmat0, 'mu0':self.mu0, 'Sigma0':self.Sigma0, 'mixmat0':self.mixmat0} with open('MhmmEM2DTest.cache', 'wb') as f: dump(cache, f) savemat('MhmmEM2DTest.mat', cache)