Example #1
0
def gaussian_exhaustive_test():
    model = random_model(3)
    obs_distns = [
            d.Gaussian(mu=np.random.randn(2),sigma=np.eye(2)),
            d.Gaussian(mu=np.random.randn(2),sigma=np.eye(2)),
            d.Gaussian(mu=np.random.randn(2),sigma=np.eye(2))]
    stateseq = np.random.randint(3,size=10)
    data = np.vstack([obs_distns[a].rvs() for a in stateseq])
    target_val = compute_likelihood_enumeration(obs_distns=obs_distns,data=data,**model)
    likelihood_check(target_val=target_val,data=data,obs_distns=obs_distns,**model)
Example #2
0
def _random_variant_model():
    N = 4
    obs_dim = 2

    obs_hypparams = {
        'mu_0': np.zeros(obs_dim),
        'sigma_0': np.eye(obs_dim),
        'kappa_0': 0.05,
        'nu_0': obs_dim + 5
    }

    obs_distns = [d.Gaussian(**obs_hypparams) for state in range(N)]

    dur_distns = \
            [d.NegativeBinomialIntegerRVariantDuration(
                np.r_[0,0,0,0,0,1.,1.,1.], # discrete distribution uniform over {6,7,8}
                alpha_0=9,beta_0=1, # average geometric success probability 1/(9+1)
                ) for state in range(N)]

    model = m.HSMMIntNegBinVariant(init_state_concentration=10.,
                                   alpha=6.,
                                   gamma=6.,
                                   obs_distns=obs_distns,
                                   dur_distns=dur_distns)

    return model
Example #3
0
def likelihood_exhaustive_tests():

    ### discrete data

    for i in range(2):
        model = random_model(2)
        obs_distns = [
            d.Categorical(K=3, alpha_0=1.),
            d.Categorical(K=3, alpha_0=1.)
        ]
        stateseq = np.random.randint(2, size=10)
        data = np.array([obs_distns[a].rvs() for a in stateseq])
        target_val = compute_likelihood_enumeration(obs_distns=obs_distns,
                                                    data=data,
                                                    **model)
        yield make_nose_tuple(_likelihood_helper,
                              target_val=target_val,
                              data=data,
                              obs_distns=obs_distns,
                              **model)

    # Gaussian data

    for i in range(2):
        model = random_model(3)
        obs_distns = [
            d.Gaussian(mu=np.random.randn(2), sigma=np.eye(2)),
            d.Gaussian(mu=np.random.randn(2), sigma=np.eye(2)),
            d.Gaussian(mu=np.random.randn(2), sigma=np.eye(2))
        ]
        stateseq = np.random.randint(3, size=10)
        data = np.vstack([obs_distns[a].rvs() for a in stateseq])
        target_val = compute_likelihood_enumeration(obs_distns=obs_distns,
                                                    data=data,
                                                    **model)
        yield make_nose_tuple(_likelihood_helper,
                              target_val=target_val,
                              data=data,
                              obs_distns=obs_distns,
                              **model)
Example #4
0
import numpy as np
from matplotlib import pyplot as plt

from pyhsmm import models, distributions

np.random.seed(0)
np.seterr(invalid='raise')

obs_hypparams = dict(mu_0=np.zeros(2), sigma_0=np.eye(2), kappa_0=0.05, nu_0=5)

### generate data

num_modes = 3

true_obs_distns = [
    distributions.Gaussian(**obs_hypparams) for i in range(num_modes)
]
data = np.concatenate(
    [true_obs_distns[i % num_modes].rvs(25) for i in range(25)])

## inference!

hmm = models.HMM(obs_distns=[
    distributions.Gaussian(**obs_hypparams) for i in range(num_modes * 3)
],
                 alpha=3.,
                 init_state_concentration=1.)
hmm.add_data(data)
hmm.meanfield_coordinate_descent_step()
scores = [hmm.meanfield_coordinate_descent_step() for i in range(50)]
scores = np.array(scores)
Example #5
0
allseqs = np.array_split(alldata, 250)
datas, heldout = hold_out(allseqs, 0.05)
training_size = sum(data.shape[0] for data in datas)
print('...done!')

print('%d total frames' % sum(data.shape[0] for data in alldata))
print('split into %d training and %d test sequences' %
      (len(datas), len(heldout)))

### inference!

Nmax = 20
obs_hypparams = dict(mu_0=np.zeros(2), sigma_0=np.eye(2), kappa_0=0.2, nu_0=5)

hmm = models.HMM(
    obs_distns=[distributions.Gaussian(**obs_hypparams) for i in range(Nmax)],
    alpha=10.,
    init_state_concentration=1.)

scores = []
sgdseq = sgd_passes(tau=0, kappa=0.7, datalist=datas)
for t, (data, rho_t) in progprint(enumerate(sgdseq)):
    hmm.meanfield_sgdstep(data, data.shape[0] / training_size, rho_t)

    if t % 10 == 0:
        scores.append(hmm.log_likelihood(heldout))

plt.figure()
plt.plot(scores)

plt.show()