Example #1
0
    if key == ord('q'): #finaliza o monitoramento
        break
    
    if key == ord('x'): #evento que aciona a região de interesse
        print("Botão Pressionado...efetuando a gravação, aguarde alguns segundos\n")
        consecFrames=0

        if not kcw.recording:
            timestamp = datetime.datetime.now()
            p = "{}/{}.avi".format('output', timestamp.strftime("%d-%m-%Y-%H:%M:%S"))
            kcw.start(p, cv2.VideoWriter_fourcc(*mn.parametros['codec']),mn.parametros['fps'])
    
    if updateConsecFrames:
        consecFrames += 1

    kcw.update(frame)

    if kcw.recording and consecFrames == mn.parametros['buffer']:
        kcw.finish()

if kcw.recording:
    kcw.finish()

cv2.destroyAllWindows()
vs.stop()

up = upload()
if mn.enviar_drive() and up.internet():
    up.uparVideos('output')
else:
    print("[INFO] O computador não possui internet neste momento, o arquivo será salvo no disco")
Example #2
0
class GenericDetector:
    def __init__(self,
                 path,
                 headless,
                 buffer_size,
                 codec,
                 fps,
                 net,
                 confidence,
                 frameCount=32,
                 notifier=None,
                 url=None,
                 debugmemory=False,
                 blocking=False):
        # initialize the video stream, allow the camera sensor to warm up,
        # and initialize the FPS counter
        print("[INFO] starting video stream...")
        self.vs = VideoStream(src=0).start()
        # vs = VideoStream(usePiCamera=True).start()
        time.sleep(2.0)
        self.fps = FPS().start()

        # initialize the key clip writer and the motionFrames
        # and consecFrames to track frames without motion
        self.buffer_size = buffer_size
        self.kcw = KeyClipWriter(bufSize=buffer_size)
        self.consecFrames = 0  # number of frames with no motion
        self.prev_detections = None

        # initialize the output frame and a lock used to ensure thread-safe
        # exchanges of the output frames (useful when multiple browsers/tabs
        # are viewing the stream)
        self.outputFrame = None
        self.lock = threading.Lock()

        self.path = path
        self.headless = headless
        self.codec = codec
        self.fps_rate = fps
        self.net = net
        self.confidence = confidence
        self.frameCount = frameCount
        self.notifier = notifier
        self.url = url
        self.debugmemory = debugmemory
        self.blocking = blocking

        if not self.blocking:
            self.inputQueue = Queue(maxsize=1)
            self.outputQueue = Queue(maxsize=1)

    def __del__(self):
        self.kcw.finish()
        # stop the timer and display FPS information
        self.vs.stop()
        self.fps.stop()
        print("[INFO] elapsed time: {:.2f}".format(fps.elapsed()))
        print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))

    def loop_over_detections(self, frame, detections, w, h):
        detected = False
        msg = []

        # loop over the detections
        for i in np.arange(0, detections.shape[2]):
            # extract the confidence (i.e., probability) associated with
            # the prediction
            confidence = detections[0, 0, i, 2]

            # filter out weak detections by ensuring the `confidence` is
            # greater than the minimum confidence
            if confidence > self.confidence:
                # extract the index of the class label from the
                # `detections`, then compute the (x, y)-coordinates of
                # the bounding box for the object
                idx = int(detections[0, 0, i, 1])
                box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
                (startX, startY, endX, endY) = box.astype("int")

                # draw the timestamp
                timestamp = datetime.datetime.now()
                cv2.putText(frame, timestamp.strftime("%Y.%m.%d %H:%M:%S"),
                            (5, 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[0],
                            2)

                # draw the prediction on the frame
                label = "{}: {:.2f}%".format(CLASSES[idx], confidence * 100)
                cv2.rectangle(frame, (startX, startY), (endX, endY),
                              COLORS[idx], 2)
                y = startY - 15 if startY - 15 > 15 else startY + 15
                cv2.putText(frame, label, (startX, y),
                            cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2)

        # record this frame
        if self.prev_detections is None:
            return

        if np.array_equal(self.prev_detections, detections[0, 0, :, 1]):
            return

        detected = True

        # if we are not already recording, start recording
        if not self.kcw.recording:
            difference = set(detections[0, 0, :, 1]).symmetric_difference(
                set(self.prev_detections))

            for o in difference:
                msg.append(CLASSES[int(o)])

            timestamp = datetime.datetime.now()
            ts = timestamp.strftime("%Y%m%d-%H%M%S")
            p = "{}/{}.avi".format(self.path, ts)
            print(timestamp, 'Start recording', p)
            self.kcw.start(p, cv2.VideoWriter_fourcc(*self.codec),
                           self.fps_rate)

            if len(msg) > 0:
                msg = ', '.join(msg)
                msg = '{}: {} appeared'.format(ts, msg)
                if self.url:
                    msg = msg + ' {}/video_feed'.format(self.url)
                print(msg)
                if self.notifier:
                    self.notifier(msg)

        return detected

    def detect_object_in_frame(self, frame):
        frame = imutils.resize(frame, width=400)

        # update the key frame clip buffer
        self.kcw.update(frame)

        # grab the frame dimensions and convert it to a blob
        (h, w) = frame.shape[:2]

        # run detection in current process
        detections = self.classify_frame(frame)

        if detections is not None:
            if self.loop_over_detections(frame, detections, w, h):
                self.consecFrames = 0
            self.prev_detections = detections[
                0, 0, :, 1]  # save objects, detected on current frame

        return frame

    def _classify_frame(self, frame):
        frame = cv2.resize(frame, (300, 300))
        blob = cv2.dnn.blobFromImage(frame, 0.007843, (300, 300), 127.5)
        # set the blob as input to our deep learning object
        # detector and obtain the detections
        self.net.setInput(blob)
        return self.net.forward()

    def classify_frame(self, frame):
        if self.blocking:
            return self._classify_frame(frame)

        # if the input queue *is* empty, give the current frame to
        # classify
        if self.inputQueue.empty():
            self.inputQueue.put(frame)

        # if the output queue *is not* empty, grab the detections
        if not self.outputQueue.empty():
            return self.outputQueue.get()

    def loop_classify_frame(self):
        assert not self.blocking  # only for non-blocking case
        # keep looping
        while True:
            # check to see if there is a frame in our input queue
            if self.inputQueue.empty():
                continue
            # grab the frame from the input queue, resize it, and
            # construct a blob from it
            frame = self.inputQueue.get()
            detections = self._classify_frame(frame)
            # write the detections to the output queue
            self.outputQueue.put(detections)

    def generate(self):
        "Yield image/jpeg for web serving"
        # grab global references to the output frame and lock variables
        # loop over frames from the output stream
        while True:
            # wait until the lock is acquired
            with self.lock:
                # check if the output frame is available, otherwise skip
                # the iteration of the loop
                if self.outputFrame is None:
                    continue
                # encode the frame in JPEG format
                (flag, encodedImage) = cv2.imencode(".jpg", self.outputFrame)
                # ensure the frame was successfully encoded
                if not flag:
                    continue

            # yield the output frame in the byte format
            yield (b'--frame\r\n'
                   b'Content-Type: image/jpeg\r\n\r\n' +
                   bytearray(encodedImage) + b'\r\n')
def detect_motion(outputDirectory):
    global vs, outputFrame, lock

    frameCount = 32
    md = SingleMotionDetector(accumWeight=0.1)
    total = 0

    recordedFrameCount = 0
    kcw = KeyClipWriter(bufSize=beforeAndAfterFrames)
    lastFileName = None

    while True:
        # read the next frame from the video stream, resize it,
        # convert the frame to grayscale, and blur it
        frame = vs.read()
        frame = imutils.resize(frame, width=600)
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        gray = cv2.GaussianBlur(gray, (7, 7), 0)

        # grab the current timestamp and draw it on the frame
        timestamp = datetime.datetime.now()
        cv2.putText(frame, timestamp.strftime("%A %d %B %Y %I:%M:%S%p"),
                    (10, frame.shape[0] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.35,
                    (0, 255, 0), 1)

        # if the total number of frames has reached a sufficient
        # number to construct a reasonable background model, then
        # continue to process the frame
        if total > frameCount:

            kcw.update(frame)

            motion = md.detect(gray)

            # check to see if motion was found in the frame
            if motion is not None:
                # unpack the tuple and draw the box surrounding the
                # "motion area" on the output frame
                (thresh, (minX, minY, maxX, maxY)) = motion
                cv2.rectangle(frame, (minX, minY), (maxX, maxY), (0, 0, 255),
                              2)
                if kcw.recording is False:
                    recordedFrameCount = 0
                    timestamp = datetime.datetime.now()
                    lastFileName = "{}/{}.mp4".format(
                        outputDirectory, timestamp.strftime("%Y%m%d-%H%M%S"))
                    kcw.start(lastFileName, cv2.VideoWriter_fourcc(*"MP4V"),
                              fps)
                    logging.info("Started recording")

            if kcw.recording is True:
                recordedFrameCount += 1

                if recordedFrameCount > beforeAndAfterFrames:
                    logging.info("Stopped recording")
                    kcw.finish()
                    if lastFileName is not None:
                        ah.sendEvent(lastFileName)

        # update the background model and increment the total number
        # of frames read thus far
        md.update(gray)
        total += 1

        # acquire the lock, set the output frame, and release the
        # lock
        with lock:
            outputFrame = frame.copy()