def p_xor(): X = np.array([(0,0),(0,1),(1,0),(1,1)]) y = np.array([[0],[1],[1],[0]]) print("[INFO] training perceptron...") p = perceptron.Perceptron(X.shape[1],alpha=0.1) p.fit(X,y,epochs=20) print("[INFO] testing perceptron...") for(x,target) in zip(X,y): pred = p.predict(x) print("[INFO] data={},group-truth={},pred={}".format(x,target[0],pred))
from pyimagesearch.nn import perceptron import numpy as np X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]]) y = np.array([[0], [1], [1], [1]]) print("[INFO] training perceptron...") p = perceptron.Perceptron(X.shape[1], alpha=0.1) p.fit(X, y, epochs=20) print("[INFO] testing perceptron...") for (x, target) in zip(X, y): pred = p.predict(x) print("[INFO] data={}, ground-truth={}, pred={}".format( x, target[0], pred))