cnts = sorted([(c, cv2.boundingRect(c)[0]) for c in cnts], key = lambda x: x[1]) # loop over the contours for (c, _) in cnts: (x,y,w,h) = cv2.boundingRect(c) # if the width is atleast 7 pixels and the height is atleast 20 pixels, the ocntour is likely a digit if w >= 7 and h >= 20: roi = gray[y:y+h, x:x+w] thresh = roi.copy() T = mahotas.thresholding.otsu(roi) thresh[thresh > T] = 255 thresh = cv2.bitwise_not(thresh) # deskwe the image center its extent thresh = dataset.deskew(thresh, 20) thresh = dataset.center_extent(thresh, (20, 20)) cv2.imshow("thresh", thresh) # extract features from the image and reshape the array hist = hog.describe(thresh) hist = hist.reshape(1, -1) # classify digit = model.predict(hist)[0] print("I think that number is: {}".format(digit)) # draw a rectangle around the digit, the show what the # digit was classified as cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 1) cv2.putText(image, str(digit), (x - 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 1.2, (0, 255, 0), 2) cv2.imshow("image", image)
"--model", required=True, help="path to where the model will be stored") args = vars(ap.parse_args()) # load the dataset and initialize the data matrix (digits, target) = dataset.load_digits(args["dataset"]) data = [] # initialize the HOG descriptor hog = HOG(orientations=18, pixelsPerCell=(10, 10), cellsPerBlock=(1, 1), normalize=True) # loop over the images for image in digits: # deskew the image, center it image = dataset.deskew(image, 20) image = dataset.center_extent(image, (20, 20)) # describe the image and update the data matrix hist = hog.describe(image) data.append(hist) # train the model model = LinearSVC(random_state=42) model.fit(data, target) # dump the model to file joblib.dump(model, args["model"])