def test_storage(self): a = np.eye(2, 2) b = np.array([[0], [1]]) u = MonotonousInput() ic = np.zeros((2, 1)) ss = sim.StateSpace("test", a, b, input_handle=u) # run simulation to fill the internal storage domain = sim.Domain((0, 10), step=.1) res = sim.simulate_state_space(ss, ic, domain) # don't return entries that are not there self.assertRaises(KeyError, u.get_results, domain, "Unknown Entry") # default key is "output" ed = u.get_results(domain) ed_explicit = u.get_results(domain, result_key="output") self.assertTrue(np.array_equal(ed, ed_explicit)) # return np.ndarray as default self.assertIsInstance(ed, np.ndarray) # return EvalData if corresponding flag is set self.assertIsInstance(u.get_results(domain, as_eval_data=True), sim.EvalData)
def setUp(self): self.u = CorrectInput() # setup temp and spat domain spat_domain = sim.Domain((0, 1), num=3) nodes, ini_funcs = sf.cure_interval(sf.LagrangeFirstOrder, spat_domain.bounds, node_count=3) register_base("init_funcs", ini_funcs, overwrite=True) # enter string with mass equations for testing int1 = ph.IntegralTerm( ph.Product(ph.TemporalDerivedFieldVariable("init_funcs", 2), ph.TestFunction("init_funcs")), spat_domain.bounds) s1 = ph.ScalarTerm( ph.Product( ph.TemporalDerivedFieldVariable("init_funcs", 2, location=0), ph.TestFunction("init_funcs", location=0))) int2 = ph.IntegralTerm( ph.Product(ph.SpatialDerivedFieldVariable("init_funcs", 1), ph.TestFunction("init_funcs", order=1)), spat_domain.bounds) s2 = ph.ScalarTerm( ph.Product(ph.Input(self.u), ph.TestFunction("init_funcs", location=1)), -1) string_pde = sim.WeakFormulation([int1, s1, int2, s2]) self.cf = sim.parse_weak_formulation(string_pde) self.ic = np.zeros((3, 2))
def test_call_arguments(self): a = np.eye(2, 2) b = np.array([[0], [1]]) u = CorrectInput() ic = np.zeros((2, 1)) ss = sim.StateSpace("test", {1: a}, {1: b}, input_handle=u) # if caller provides correct kwargs no exception should be raised res = sim.simulate_state_space(ss, ic, sim.Domain((0, 1), num=10))
def setUp(self): z_start = 0 z_end = 1 z_step = 0.1 self.dz = sim.Domain(bounds=(z_start, z_end), num=9) t_start = 0 t_end = 10 t_step = 0.01 self.dt = sim.Domain(bounds=(t_start, t_end), step=t_step) self.params = ut.Parameters self.params.node_distance = 0.1 self.params.m = 1.0 self.params.order = 8 self.params.sigma = 1 self.params.tau = 1 self.y_end = 10 self.u = tr.FlatString(0, self.y_end, z_start, z_end, 0, 5, self.params) def x(z, t): """ initial conditions for testing """ return 0 def x_dt(z, t): """ initial conditions for testing """ return 0 # initial conditions self.ic = np.array([ cr.Function(lambda z: x(z, 0)), # x(z, 0) cr.Function(lambda z: x_dt(z, 0)), # dx_dt(z, 0) ])
# PARAMETERS TO VARY # number of eigenfunctions, used for control law approximation n_modal = 10 # number FEM test functions, used for system approximation/simulation n_fem = 30 # control law parameter, stabilizing: param_a0_t < 0, destabilizing: param_a0_t > 0 param_a0_t = -6 # initial profile x(z,0) (desired x(z,0)=0) init_profile = 0.2 # system/simulation parameters actuation_type = 'robin' bound_cond_type = 'robin' l = 1 T = 1 spatial_domain = sim.Domain(bounds=(0, l), num=n_fem) temporal_domain = sim.Domain(bounds=(0, T), num=1e2) n = n_modal show_plots = False # original system parameters a2 = .5 a1 = 1 a0 = 2 alpha = -0.5 beta = -1 param = [a2, a1, a0, alpha, beta] adjoint_param = ef.get_adjoint_rad_evp_param(param) # target system parameters (controller parameters) a1_t = -1
def test_fem(self): # system/simulation parameters actuation_type = 'robin' bound_cond_type = 'robin' self.l = 1. spatial_disc = 30 self.dz = sim.Domain(bounds=(0, self.l), num=spatial_disc) self.T = 1. temporal_disc = 1e2 self.dt = sim.Domain(bounds=(0, self.T), num=temporal_disc) self.n = 12 # original system parameters a2 = 1.5 a1 = 2.5 a0 = 28 alpha = -2 beta = -3 self.param = [a2, a1, a0, alpha, beta] adjoint_param = ef.get_adjoint_rad_evp_param(self.param) # target system parameters (controller parameters) a1_t = -5 a0_t = -25 alpha_t = 3 beta_t = 2 self.param_t = [a2, a1_t, a0_t, alpha_t, beta_t] # actuation_type by b which is close to b_desired on a k times subdivided spatial domain b_desired = self.l / 2 k = 51 # = k1 + k2 k1, k2, self.b = ut.split_domain(k, b_desired, self.l, mode='coprime')[0:3] M = np.linalg.inv( ut.get_inn_domain_transformation_matrix(k1, k2, mode="2n")) # original intermediate ("_i") and traget intermediate ("_ti") system parameters _, _, a0_i, self.alpha_i, self.beta_i = ef.transform2intermediate( self.param) self.param_i = a2, 0, a0_i, self.alpha_i, self.beta_i _, _, a0_ti, self.alpha_ti, self.beta_ti = ef.transform2intermediate( self.param_t) self.param_ti = a2, 0, a0_ti, self.alpha_ti, self.beta_ti # create (not normalized) eigenfunctions eig_freq, self.eig_val = ef.compute_rad_robin_eigenfrequencies( self.param, self.l, self.n) init_eig_funcs = np.array([ ef.SecondOrderRobinEigenfunction(om, self.param, self.dz.bounds) for om in eig_freq ]) init_adjoint_eig_funcs = np.array([ ef.SecondOrderRobinEigenfunction(om, adjoint_param, self.dz.bounds) for om in eig_freq ]) # normalize eigenfunctions and adjoint eigenfunctions adjoint_and_eig_funcs = [ cr.normalize_function(init_eig_funcs[i], init_adjoint_eig_funcs[i]) for i in range(self.n) ] eig_funcs = np.array([f_tuple[0] for f_tuple in adjoint_and_eig_funcs]) self.adjoint_eig_funcs = np.array( [f_tuple[1] for f_tuple in adjoint_and_eig_funcs]) # eigenfunctions of the in-domain intermediate (_id) and the intermediate (_i) system eig_freq_i, eig_val_i = ef.compute_rad_robin_eigenfrequencies( self.param_i, self.l, self.n) self.assertTrue(all(np.isclose(eig_val_i, self.eig_val))) eig_funcs_id = np.array([ ef.SecondOrderRobinEigenfunction(eig_freq_i[i], self.param_i, self.dz.bounds, eig_funcs[i](0)) for i in range(self.n) ]) eig_funcs_i = np.array([ ef.SecondOrderRobinEigenfunction( eig_freq_i[i], self.param_i, self.dz.bounds, eig_funcs[i](0) * eig_funcs_id[i](self.l) / eig_funcs_id[i](self.b)) for i in range(self.n) ]) # eigenfunctions from target system ("_ti") eig_freq_ti = np.sqrt((a0_ti - self.eig_val) / a2) eig_funcs_ti = np.array([ ef.SecondOrderRobinEigenfunction(eig_freq_ti[i], self.param_ti, self.dz.bounds, eig_funcs_i[i](0)) for i in range(self.n) ]) # create testfunctions nodes, self.fem_funcs = sf.cure_interval(sf.LagrangeFirstOrder, self.dz.bounds, node_count=self.n) # register eigenfunctions # register_functions("eig_funcs", eig_funcs, overwrite=True) register_base("adjoint_eig_funcs", self.adjoint_eig_funcs, overwrite=True) register_base("eig_funcs", eig_funcs, overwrite=True) register_base("eig_funcs_i", eig_funcs_i, overwrite=True) register_base("eig_funcs_ti", eig_funcs_ti, overwrite=True) register_base("fem_funcs", self.fem_funcs, overwrite=True) # init trajectory self.traj = tr.RadTrajectory(self.l, self.T, self.param_ti, bound_cond_type, actuation_type) # original () and target (_t) field variable fem_field_variable = ph.FieldVariable("fem_funcs", location=self.l) field_variable_i = ph.FieldVariable("eig_funcs_i", weight_label="eig_funcs", location=self.l) d_field_variable_i = ph.SpatialDerivedFieldVariable( "eig_funcs_i", 1, weight_label="eig_funcs", location=self.l) field_variable_ti = ph.FieldVariable("eig_funcs_ti", weight_label="eig_funcs", location=self.l) d_field_variable_ti = ph.SpatialDerivedFieldVariable( "eig_funcs_ti", 1, weight_label="eig_funcs", location=self.l) # intermediate (_i) and target intermediate (_ti) field variable (list of scalar terms = sum of scalar terms) self.x_fem_i_at_l = [ph.ScalarTerm(fem_field_variable)] self.x_i_at_l = [ph.ScalarTerm(field_variable_i)] self.xd_i_at_l = [ph.ScalarTerm(d_field_variable_i)] self.x_ti_at_l = [ph.ScalarTerm(field_variable_ti)] self.xd_ti_at_l = [ph.ScalarTerm(d_field_variable_ti)] # shift transformation shifted_fem_funcs_i = np.array([ ef.FiniteTransformFunction( func, M, self.b, self.l, scale_func=lambda z: np.exp(a1 / 2 / a2 * z)) for func in self.fem_funcs ]) shifted_eig_funcs_id = np.array([ ef.FiniteTransformFunction(func, M, self.b, self.l) for func in eig_funcs_id ]) register_base("sh_fem_funcs_i", shifted_fem_funcs_i, overwrite=True) register_base("sh_eig_funcs_id", shifted_eig_funcs_id, overwrite=True) sh_fem_field_variable_i = ph.FieldVariable("sh_fem_funcs_i", weight_label="fem_funcs", location=self.l) sh_field_variable_id = ph.FieldVariable("sh_eig_funcs_id", weight_label="eig_funcs", location=self.l) self.sh_x_fem_i_at_l = [ ph.ScalarTerm(sh_fem_field_variable_i), ph.ScalarTerm(field_variable_i), ph.ScalarTerm(sh_field_variable_id, -1) ] # discontinuous operator (Kx)(t) = int_kernel_zz(l)*x(l,t) self.int_kernel_zz = lambda z: self.alpha_ti - self.alpha_i + ( a0_i - a0_ti) / 2 / a2 * z a2, a1, _, _, _ = self.param controller = ut.get_parabolic_robin_backstepping_controller( state=self.sh_x_fem_i_at_l, approx_state=self.x_i_at_l, d_approx_state=self.xd_i_at_l, approx_target_state=self.x_ti_at_l, d_approx_target_state=self.xd_ti_at_l, integral_kernel_zz=self.int_kernel_zz(self.l), original_beta=self.beta_i, target_beta=self.beta_ti, trajectory=self.traj, scale=np.exp(-a1 / 2 / a2 * self.b)) # determine (A,B) with modal-transfomation rad_pde = ut.get_parabolic_robin_weak_form("fem_funcs", "fem_funcs", controller, self.param, self.dz.bounds, self.b) cf = sim.parse_weak_formulation(rad_pde) ss_weak = cf.convert_to_state_space() # simulate t, q = sim.simulate_state_space(ss_weak, np.zeros( (len(self.fem_funcs))), self.dt) # weights of the intermediate system mat = cr.calculate_base_transformation_matrix(self.fem_funcs, eig_funcs) q_i = np.zeros((q.shape[0], len(eig_funcs_i))) for i in range(q.shape[0]): q_i[i, :] = np.dot(q[i, :], np.transpose(mat)) eval_i = sim.evaluate_approximation("eig_funcs_i", q_i, t, self.dz) x_0t = eval_i.output_data[:, 0] yc, tc = tr.gevrey_tanh(self.T, 1) x_0t_desired = np.interp(t, tc, yc[0, :]) self.assertLess(np.average((x_0t - x_0t_desired)**2), 1e-2) # display results if show_plots: eval_d = sim.evaluate_approximation("fem_funcs", q, t, self.dz) win1 = vis.PgSurfacePlot(eval_i) win2 = vis.PgSurfacePlot(eval_d) app.exec_()
def test_it(self): # system/simulation parameters actuation_type = 'robin' bound_cond_type = 'robin' self.l = 1. spatial_disc = 10 self.dz = sim.Domain(bounds=(0, self.l), num=spatial_disc) self.T = 1. temporal_disc = 1e2 self.dt = sim.Domain(bounds=(0, self.T), num=temporal_disc) self.n = 10 # original system parameters a2 = 1.5 a1_z = cr.Function(lambda z: 1, derivative_handles=[lambda z: 0]) a0_z = lambda z: 3 alpha = -2 beta = -3 self.param = [a2, a1_z, a0_z, alpha, beta] # target system parameters (controller parameters) a1_t = -5 a0_t = -25 alpha_t = 3 beta_t = 2 self.param_t = [a2, a1_t, a0_t, alpha_t, beta_t] adjoint_param_t = ef.get_adjoint_rad_evp_param(self.param_t) # original intermediate ("_i") and traget intermediate ("_ti") system parameters _, _, a0_i, alpha_i, beta_i = ef.transform2intermediate(self.param, d_end=self.l) self.param_i = a2, 0, a0_i, alpha_i, beta_i _, _, a0_ti, alpha_ti, beta_ti = ef.transform2intermediate( self.param_t) self.param_ti = a2, 0, a0_ti, alpha_ti, beta_ti # create (not normalized) target (_t) eigenfunctions eig_freq_t, self.eig_val_t = ef.compute_rad_robin_eigenfrequencies( self.param_t, self.l, self.n) init_eig_funcs_t = np.array([ ef.SecondOrderRobinEigenfunction(om, self.param_t, self.dz.bounds) for om in eig_freq_t ]) init_adjoint_eig_funcs_t = np.array([ ef.SecondOrderRobinEigenfunction(om, adjoint_param_t, self.dz.bounds) for om in eig_freq_t ]) # normalize eigenfunctions and adjoint eigenfunctions adjoint_and_eig_funcs_t = [ cr.normalize_function(init_eig_funcs_t[i], init_adjoint_eig_funcs_t[i]) for i in range(self.n) ] eig_funcs_t = np.array( [f_tuple[0] for f_tuple in adjoint_and_eig_funcs_t]) self.adjoint_eig_funcs_t = np.array( [f_tuple[1] for f_tuple in adjoint_and_eig_funcs_t]) # # transformed original eigenfunctions self.eig_funcs = np.array([ ef.TransformedSecondOrderEigenfunction( self.eig_val_t[i], [eig_funcs_t[i](0), alpha * eig_funcs_t[i](0), 0, 0], [a2, a1_z, a0_z], np.linspace(0, self.l, 1e4)) for i in range(self.n) ]) # create testfunctions nodes, self.fem_funcs = sf.cure_interval(sf.LagrangeFirstOrder, self.dz.bounds, node_count=self.n) # register functions register_base("eig_funcs_t", eig_funcs_t, overwrite=True) register_base("adjoint_eig_funcs_t", self.adjoint_eig_funcs_t, overwrite=True) register_base("eig_funcs", self.eig_funcs, overwrite=True) register_base("fem_funcs", self.fem_funcs, overwrite=True) # init trajectory self.traj = tr.RadTrajectory(self.l, self.T, self.param_ti, bound_cond_type, actuation_type) # original () and target (_t) field variable fem_field_variable = ph.FieldVariable("fem_funcs", location=self.l) field_variable_t = ph.FieldVariable("eig_funcs_t", weight_label="eig_funcs", location=self.l) d_field_variable_t = ph.SpatialDerivedFieldVariable( "eig_funcs_t", 1, weight_label="eig_funcs", location=self.l) field_variable = ph.FieldVariable("eig_funcs", location=self.l) d_field_variable = ph.SpatialDerivedFieldVariable("eig_funcs", 1, location=self.l) # intermediate (_i) and target intermediate (_ti) transformations by z=l # x_i = x * transform_i_at_l self.transform_i_at_l = np.exp( integrate.quad(lambda z: a1_z(z) / 2 / a2, 0, self.l)[0]) # x = x_i * inv_transform_i_at_l self.inv_transform_i_at_l = np.exp( -integrate.quad(lambda z: a1_z(z) / 2 / a2, 0, self.l)[0]) # x_ti = x_t * transform_ti_at_l self.transform_ti_at_l = np.exp(a1_t / 2 / a2 * self.l) # intermediate (_i) and target intermediate (_ti) field variable (list of scalar terms = sum of scalar terms) self.x_fem_i_at_l = [ ph.ScalarTerm(fem_field_variable, self.transform_i_at_l) ] self.x_i_at_l = [ph.ScalarTerm(field_variable, self.transform_i_at_l)] self.xd_i_at_l = [ ph.ScalarTerm(d_field_variable, self.transform_i_at_l), ph.ScalarTerm(field_variable, self.transform_i_at_l * a1_z(self.l) / 2 / a2) ] self.x_ti_at_l = [ ph.ScalarTerm(field_variable_t, self.transform_ti_at_l) ] self.xd_ti_at_l = [ ph.ScalarTerm(d_field_variable_t, self.transform_ti_at_l), ph.ScalarTerm(field_variable_t, self.transform_ti_at_l * a1_t / 2 / a2) ] # discontinuous operator (Kx)(t) = int_kernel_zz(l)*x(l,t) self.int_kernel_zz = alpha_ti - alpha_i + integrate.quad( lambda z: (a0_i(z) - a0_ti) / 2 / a2, 0, self.l)[0] controller = ut.get_parabolic_robin_backstepping_controller( state=self.x_fem_i_at_l, approx_state=self.x_i_at_l, d_approx_state=self.xd_i_at_l, approx_target_state=self.x_ti_at_l, d_approx_target_state=self.xd_ti_at_l, integral_kernel_zz=self.int_kernel_zz, original_beta=beta_i, target_beta=beta_ti, trajectory=self.traj, scale=self.inv_transform_i_at_l) rad_pde = ut.get_parabolic_robin_weak_form("fem_funcs", "fem_funcs", controller, self.param, self.dz.bounds) cf = sim.parse_weak_formulation(rad_pde) ss_weak = cf.convert_to_state_space() # simulate t, q = sim.simulate_state_space(ss_weak, np.zeros( (len(self.fem_funcs))), self.dt) eval_d = sim.evaluate_approximation("fem_funcs", q, t, self.dz) x_0t = eval_d.output_data[:, 0] yc, tc = tr.gevrey_tanh(self.T, 1) x_0t_desired = np.interp(t, tc, yc[0, :]) self.assertLess(np.average((x_0t - x_0t_desired)**2), 1e-4) # display results if show_plots: win1 = vis.PgAnimatedPlot([eval_d], title="Test") win2 = vis.PgSurfacePlot(eval_d) app.exec_()
def setUp(self): # original system parameters a2 = 1.5 a1 = 2.5 a0 = 28 alpha = -2 beta = -3 self.param = [a2, a1, a0, alpha, beta] adjoint_param = ef.get_adjoint_rad_evp_param(self.param) # target system parameters (controller parameters) a1_t = -5 a0_t = -25 alpha_t = 3 beta_t = 2 # a1_t = a1; a0_t = a0; alpha_t = alpha; beta_t = beta self.param_t = [a2, a1_t, a0_t, alpha_t, beta_t] # original intermediate ("_i") and target intermediate ("_ti") system parameters _, _, a0_i, self.alpha_i, self.beta_i = ef.transform2intermediate( self.param) self.param_i = a2, 0, a0_i, self.alpha_i, self.beta_i _, _, a0_ti, self.alpha_ti, self.beta_ti = ef.transform2intermediate( self.param_t) self.param_ti = a2, 0, a0_ti, self.alpha_ti, self.beta_ti # system/simulation parameters actuation_type = 'robin' bound_cond_type = 'robin' self.l = 1. spatial_disc = 10 self.dz = sim.Domain(bounds=(0, self.l), num=spatial_disc) self.T = 1. temporal_disc = 1e2 self.dt = sim.Domain(bounds=(0, self.T), num=temporal_disc) self.n = 10 # create (not normalized) eigenfunctions eig_freq, self.eig_val = ef.compute_rad_robin_eigenfrequencies( self.param, self.l, self.n) init_eig_funcs = np.array([ ef.SecondOrderRobinEigenfunction(om, self.param, self.dz.bounds) for om in eig_freq ]) init_adjoint_eig_funcs = np.array([ ef.SecondOrderRobinEigenfunction(om, adjoint_param, self.dz.bounds) for om in eig_freq ]) # normalize eigenfunctions and adjoint eigenfunctions adjoint_and_eig_funcs = [ cr.normalize_function(init_eig_funcs[i], init_adjoint_eig_funcs[i]) for i in range(self.n) ] eig_funcs = np.array([f_tuple[0] for f_tuple in adjoint_and_eig_funcs]) self.adjoint_eig_funcs = np.array( [f_tuple[1] for f_tuple in adjoint_and_eig_funcs]) # eigenfunctions from target system ("_t") eig_freq_t = np.sqrt(-a1_t**2 / 4 / a2**2 + (a0_t - self.eig_val) / a2) eig_funcs_t = np.array([ ef.SecondOrderRobinEigenfunction(eig_freq_t[i], self.param_t, self.dz.bounds).scale( eig_funcs[i](0)) for i in range(self.n) ]) # create testfunctions nodes, self.fem_funcs = sf.cure_interval(sf.LagrangeFirstOrder, self.dz.bounds, node_count=self.n) # register eigenfunctions register_base("eig_funcs", eig_funcs, overwrite=True) register_base("adjoint_eig_funcs", self.adjoint_eig_funcs, overwrite=True) register_base("eig_funcs_t", eig_funcs_t, overwrite=True) register_base("fem_funcs", self.fem_funcs, overwrite=True) # init trajectory self.traj = tr.RadTrajectory(self.l, self.T, self.param_ti, bound_cond_type, actuation_type) # original () and target (_t) field variable fem_field_variable = ph.FieldVariable("fem_funcs", location=self.l) field_variable = ph.FieldVariable("eig_funcs", location=self.l) d_field_variable = ph.SpatialDerivedFieldVariable("eig_funcs", 1, location=self.l) field_variable_t = ph.FieldVariable("eig_funcs_t", weight_label="eig_funcs", location=self.l) d_field_variable_t = ph.SpatialDerivedFieldVariable( "eig_funcs_t", 1, weight_label="eig_funcs", location=self.l) # intermediate (_i) and target intermediate (_ti) transformations by z=l self.transform_i = lambda z: np.exp(a1 / 2 / a2 * z ) # x_i = x * transform_i self.transform_ti = lambda z: np.exp(a1_t / 2 / a2 * z ) # x_ti = x_t * transform_ti # intermediate (_i) and target intermediate (_ti) field variable (list of scalar terms = sum of scalar terms) self.x_fem_i_at_l = [ ph.ScalarTerm(fem_field_variable, self.transform_i(self.l)) ] self.x_i_at_l = [ ph.ScalarTerm(field_variable, self.transform_i(self.l)) ] self.xd_i_at_l = [ ph.ScalarTerm(d_field_variable, self.transform_i(self.l)), ph.ScalarTerm(field_variable, self.transform_i(self.l) * a1 / 2 / a2) ] self.x_ti_at_l = [ ph.ScalarTerm(field_variable_t, self.transform_ti(self.l)) ] self.xd_ti_at_l = [ ph.ScalarTerm(d_field_variable_t, self.transform_ti(self.l)), ph.ScalarTerm(field_variable_t, self.transform_ti(self.l) * a1_t / 2 / a2) ] # discontinuous operator (Kx)(t) = int_kernel_zz(l)*x(l,t) self.int_kernel_zz = lambda z: self.alpha_ti - self.alpha_i + ( a0_i - a0_ti) / 2 / a2 * z
def test_it(self): # original system parameters a2 = 1.5 a1 = 2.5 a0 = 28 alpha = -2 beta = -3 param = [a2, a1, a0, alpha, beta] adjoint_param = ef.get_adjoint_rad_evp_param(param) # target system parameters (controller parameters) a1_t = -5 a0_t = -25 alpha_t = 3 beta_t = 2 # a1_t = a1; a0_t = a0; alpha_t = alpha; beta_t = beta param_t = [a2, a1_t, a0_t, alpha_t, beta_t] # original intermediate ("_i") and traget intermediate ("_ti") system parameters _, _, a0_i, alpha_i, beta_i = ef.transform2intermediate(param) _, _, a0_ti, alpha_ti, beta_ti = ef.transform2intermediate(param_t) # system/simulation parameters actuation_type = 'robin' bound_cond_type = 'robin' self.l = 1. spatial_disc = 10 dz = sim.Domain(bounds=(0, self.l), num=spatial_disc) T = 1. temporal_disc = 1e2 dt = sim.Domain(bounds=(0, T), num=temporal_disc) n = 10 # create (not normalized) eigenfunctions eig_freq, eig_val = ef.compute_rad_robin_eigenfrequencies( param, self.l, n) init_eig_funcs = np.array([ ef.SecondOrderRobinEigenfunction(om, param, dz.bounds) for om in eig_freq ]) init_adjoint_eig_funcs = np.array([ ef.SecondOrderRobinEigenfunction(om, adjoint_param, dz.bounds) for om in eig_freq ]) # normalize eigenfunctions and adjoint eigenfunctions adjoint_and_eig_funcs = [ cr.normalize_function(init_eig_funcs[i], init_adjoint_eig_funcs[i]) for i in range(n) ] eig_funcs = np.array([f_tuple[0] for f_tuple in adjoint_and_eig_funcs]) adjoint_eig_funcs = np.array( [f_tuple[1] for f_tuple in adjoint_and_eig_funcs]) # eigenfunctions from target system ("_t") eig_freq_t = np.sqrt(-a1_t**2 / 4 / a2**2 + (a0_t - eig_val) / a2) eig_funcs_t = np.array([ ef.SecondOrderRobinEigenfunction(eig_freq_t[i], param_t, dz.bounds).scale(eig_funcs[i](0)) for i in range(n) ]) # register eigenfunctions register_base("eig_funcs", eig_funcs, overwrite=True) register_base("adjoint_eig_funcs", adjoint_eig_funcs, overwrite=True) register_base("eig_funcs_t", eig_funcs_t, overwrite=True) # derive initial field variable x(z,0) and weights start_state = cr.Function(lambda z: 0., domain=(0, self.l)) initial_weights = cr.project_on_base(start_state, adjoint_eig_funcs) # controller initialization x_at_l = ph.FieldVariable("eig_funcs", location=self.l) xd_at_l = ph.SpatialDerivedFieldVariable("eig_funcs", 1, location=self.l) x_t_at_l = ph.FieldVariable("eig_funcs_t", weight_label="eig_funcs", location=self.l) xd_t_at_l = ph.SpatialDerivedFieldVariable("eig_funcs_t", 1, weight_label="eig_funcs", location=self.l) combined_transform = lambda z: np.exp((a1_t - a1) / 2 / a2 * z) int_kernel_zz = lambda z: alpha_ti - alpha_i + (a0_i - a0_ti ) / 2 / a2 * z controller = ct.Controller( ct.ControlLaw([ ph.ScalarTerm(x_at_l, (beta_i - beta_ti - int_kernel_zz(self.l))), ph.ScalarTerm(x_t_at_l, -beta_ti * combined_transform(self.l)), ph.ScalarTerm(x_at_l, beta_ti), ph.ScalarTerm(xd_t_at_l, -combined_transform(self.l)), ph.ScalarTerm(x_t_at_l, -a1_t / 2 / a2 * combined_transform(self.l)), ph.ScalarTerm(xd_at_l, 1), ph.ScalarTerm(x_at_l, a1 / 2 / a2 + int_kernel_zz(self.l)) ])) # init trajectory traj = tr.RadTrajectory(self.l, T, param_t, bound_cond_type, actuation_type) traj.scale = combined_transform(self.l) # input with feedback control_law = sim.SimulationInputSum([traj, controller]) # control_law = sim.simInputSum([traj]) # determine (A,B) with modal-transformation A = np.diag(np.real(eig_val)) B = a2 * np.array( [adjoint_eig_funcs[i](self.l) for i in range(len(eig_freq))]) ss_modal = sim.StateSpace("eig_funcs", A, B, input_handle=control_law) # simulate t, q = sim.simulate_state_space(ss_modal, initial_weights, dt) eval_d = sim.evaluate_approximation("eig_funcs", q, t, dz) x_0t = eval_d.output_data[:, 0] yc, tc = tr.gevrey_tanh(T, 1) x_0t_desired = np.interp(t, tc, yc[0, :]) self.assertLess(np.average((x_0t - x_0t_desired)**2), 1e-4) # display results if show_plots: win1 = vis.PgAnimatedPlot([eval_d], title="Test") win2 = vis.PgSurfacePlot(eval_d) app.exec_()
def test_it(self): # original system parameters a2 = 1 a1 = 0 # attention: only a2 = 1., a1 =0 supported in this test case a0 = 0 param = [a2, a1, a0, None, None] # target system parameters (controller parameters) a1_t = 0 a0_t = 0 # attention: only a2 = 1., a1 =0 and a0 =0 supported in this test case param_t = [a2, a1_t, a0_t, None, None] # system/simulation parameters actuation_type = 'dirichlet' bound_cond_type = 'dirichlet' l = 1. spatial_disc = 10 dz = sim.Domain(bounds=(0, l), num=spatial_disc) T = 1. temporal_disc = 1e2 dt = sim.Domain(bounds=(0, T), num=temporal_disc) n = 10 # eigenvalues /-functions original system eig_freq = np.array([(i + 1) * np.pi / l for i in range(n)]) eig_values = a0 - a2 * eig_freq**2 - a1**2 / 4. / a2 norm_fac = np.ones(eig_freq.shape) * np.sqrt(2) eig_funcs = np.asarray([ ef.SecondOrderDirichletEigenfunction(eig_freq[i], param, dz.bounds, norm_fac[i]) for i in range(n) ]) register_base("eig_funcs", eig_funcs, overwrite=True) # eigenfunctions target system eig_freq_t = np.sqrt(-eig_values.astype(complex)) norm_fac_t = norm_fac * eig_freq / eig_freq_t eig_funcs_t = np.asarray([ ef.SecondOrderDirichletEigenfunction(eig_freq_t[i], param_t, dz.bounds, norm_fac_t[i]) for i in range(n) ]) register_base("eig_funcs_t", eig_funcs_t, overwrite=True) # derive initial field variable x(z,0) and weights start_state = cr.Function(lambda z: 0., domain=(0, l)) initial_weights = cr.project_on_base(start_state, eig_funcs) # init trajectory / input of target system traj = tr.RadTrajectory(l, T, param_t, bound_cond_type, actuation_type) # init controller x_at_1 = ph.FieldVariable("eig_funcs", location=1) xt_at_1 = ph.FieldVariable("eig_funcs_t", weight_label="eig_funcs", location=1) controller = ct.Controller( ct.ControlLaw( [ph.ScalarTerm(x_at_1, 1), ph.ScalarTerm(xt_at_1, -1)])) # input with feedback control_law = sim.SimulationInputSum([traj, controller]) # determine (A,B) with modal-transfomation A = np.diag(eig_values) B = -a2 * np.array([eig_funcs[i].derive()(l) for i in range(n)]) ss = sim.StateSpace("eig_funcs", A, B, input_handle=control_law) # simulate t, q = sim.simulate_state_space(ss, initial_weights, dt) eval_d = sim.evaluate_approximation("eig_funcs", q, t, dz) x_0t = eval_d.output_data[:, 0] yc, tc = tr.gevrey_tanh(T, 1) x_0t_desired = np.interp(t, tc, yc[0, :]) self.assertLess(np.average((x_0t - x_0t_desired)**2), 0.5) # display results if show_plots: eval_d = sim.evaluate_approximation("eig_funcs", q, t, dz) win2 = vis.PgSurfacePlot(eval_d) app.exec_()
def test_it(self): actuation_type = 'dirichlet' bound_cond_type = 'dirichlet' param = [1., -2., -1., None, None] adjoint_param = ef.get_adjoint_rad_evp_param(param) a2, a1, a0, _, _ = param l = 1. spatial_disc = 10 dz = sim.Domain(bounds=(0, l), num=spatial_disc) T = 1. temporal_disc = 1e2 dt = sim.Domain(bounds=(0, T), num=temporal_disc) omega = np.array([(i + 1) * np.pi / l for i in range(spatial_disc)]) eig_values = a0 - a2 * omega**2 - a1**2 / 4. / a2 norm_fak = np.ones(omega.shape) * np.sqrt(2) eig_funcs = np.array([ ef.SecondOrderDirichletEigenfunction(omega[i], param, dz.bounds, norm_fak[i]) for i in range(spatial_disc) ]) register_base("eig_funcs", eig_funcs, overwrite=True) adjoint_eig_funcs = np.array([ ef.SecondOrderDirichletEigenfunction(omega[i], adjoint_param, dz.bounds, norm_fak[i]) for i in range(spatial_disc) ]) register_base("adjoint_eig_funcs", adjoint_eig_funcs, overwrite=True) # derive initial field variable x(z,0) and weights start_state = cr.Function(lambda z: 0., domain=(0, l)) initial_weights = cr.project_on_base(start_state, adjoint_eig_funcs) # init trajectory u = tr.RadTrajectory(l, T, param, bound_cond_type, actuation_type) # determine (A,B) with weak-formulation (pyinduct) # derive sate-space system rad_pde = ut.get_parabolic_dirichlet_weak_form("eig_funcs", "adjoint_eig_funcs", u, param, dz.bounds) cf = sim.parse_weak_formulation(rad_pde) ss_weak = cf.convert_to_state_space() # determine (A,B) with modal-transfomation A = np.diag(eig_values) B = -a2 * np.array( [adjoint_eig_funcs[i].derive()(l) for i in range(spatial_disc)]) ss_modal = sim.StateSpace("eig_funcs", A, B, input_handle=u) # TODO: resolve the big tolerance (rtol=3e-01) between ss_modal.A and ss_weak.A # check if ss_modal.(A,B) is close to ss_weak.(A,B) self.assertTrue( np.allclose(np.sort(np.linalg.eigvals(ss_weak.A[1])), np.sort(np.linalg.eigvals(ss_modal.A[1])), rtol=3e-1, atol=0.)) self.assertTrue( np.allclose(np.array([i[0] for i in ss_weak.B[1]]), ss_modal.B[1])) # display results if show_plots: t, q = sim.simulate_state_space(ss_modal, initial_weights, dt) eval_d = sim.evaluate_approximation("eig_funcs", q, t, dz, spat_order=1) win2 = vis.PgSurfacePlot(eval_d) app.exec_()
def test_it(self): param = [2., -1.5, -3., 2., .5] a2, a1, a0, alpha, beta = param l = 1. spatial_disc = 11 dz = sim.Domain(bounds=(0, l), num=spatial_disc) T = 1. temporal_disc = 2e2 dt = sim.Domain(bounds=(0, T), num=temporal_disc) # create test functions nodes_1, ini_funcs_1 = sf.cure_interval(sf.LagrangeFirstOrder, dz.bounds, node_count=spatial_disc) register_base("init_funcs_1", ini_funcs_1, overwrite=True) nodes_2, ini_funcs_2 = sf.cure_interval(sf.LagrangeSecondOrder, dz.bounds, node_count=spatial_disc) register_base("init_funcs_2", ini_funcs_2, overwrite=True) def test_dd(): # trajectory bound_cond_type = 'dirichlet' actuation_type = 'dirichlet' u = tr.RadTrajectory(l, T, param, bound_cond_type, actuation_type) # derive state-space system rad_pde = ut.get_parabolic_dirichlet_weak_form( "init_funcs_2", "init_funcs_2", u, param, dz.bounds) cf = sim.parse_weak_formulation(rad_pde) ss = cf.convert_to_state_space() # simulate system t, q = sim.simulate_state_space(ss, np.zeros(ini_funcs_2.shape), dt) return t, q def test_rd(): # trajectory bound_cond_type = 'robin' actuation_type = 'dirichlet' u = tr.RadTrajectory(l, T, param, bound_cond_type, actuation_type) # integral terms int1 = ph.IntegralTerm( ph.Product( ph.TemporalDerivedFieldVariable("init_funcs_2", order=1), ph.TestFunction("init_funcs_2", order=0)), dz.bounds) int2 = ph.IntegralTerm( ph.Product( ph.SpatialDerivedFieldVariable("init_funcs_2", order=0), ph.TestFunction("init_funcs_2", order=2)), dz.bounds, -a2) int3 = ph.IntegralTerm( ph.Product( ph.SpatialDerivedFieldVariable("init_funcs_2", order=1), ph.TestFunction("init_funcs_2", order=0)), dz.bounds, -a1) int4 = ph.IntegralTerm( ph.Product( ph.SpatialDerivedFieldVariable("init_funcs_2", order=0), ph.TestFunction("init_funcs_2", order=0)), dz.bounds, -a0) # scalar terms from int 2 s1 = ph.ScalarTerm( ph.Product( ph.SpatialDerivedFieldVariable("init_funcs_2", order=1, location=l), ph.TestFunction("init_funcs_2", order=0, location=l)), -a2) s2 = ph.ScalarTerm( ph.Product( ph.SpatialDerivedFieldVariable("init_funcs_2", order=0, location=0), ph.TestFunction("init_funcs_2", order=0, location=0)), a2 * alpha) s3 = ph.ScalarTerm( ph.Product( ph.SpatialDerivedFieldVariable("init_funcs_2", order=0, location=0), ph.TestFunction("init_funcs_2", order=1, location=0)), -a2) s4 = ph.ScalarTerm( ph.Product( ph.Input(u), ph.TestFunction("init_funcs_2", order=1, location=l)), a2) # derive state-space system rad_pde = sim.WeakFormulation( [int1, int2, int3, int4, s1, s2, s3, s4]) cf = sim.parse_weak_formulation(rad_pde) ss = cf.convert_to_state_space() # simulate system t, q = sim.simulate_state_space(ss, np.zeros(ini_funcs_2.shape), dt) return t, q def test_dr(): # trajectory bound_cond_type = 'dirichlet' actuation_type = 'robin' u = tr.RadTrajectory(l, T, param, bound_cond_type, actuation_type) # integral terms int1 = ph.IntegralTerm( ph.Product( ph.TemporalDerivedFieldVariable("init_funcs_1", order=1), ph.TestFunction("init_funcs_1", order=0)), dz.bounds) int2 = ph.IntegralTerm( ph.Product( ph.SpatialDerivedFieldVariable("init_funcs_1", order=1), ph.TestFunction("init_funcs_1", order=1)), dz.bounds, a2) int3 = ph.IntegralTerm( ph.Product( ph.SpatialDerivedFieldVariable("init_funcs_1", order=0), ph.TestFunction("init_funcs_1", order=1)), dz.bounds, a1) int4 = ph.IntegralTerm( ph.Product( ph.SpatialDerivedFieldVariable("init_funcs_1", order=0), ph.TestFunction("init_funcs_1", order=0)), dz.bounds, -a0) # scalar terms from int 2 s1 = ph.ScalarTerm( ph.Product( ph.SpatialDerivedFieldVariable("init_funcs_1", order=0, location=l), ph.TestFunction("init_funcs_1", order=0, location=l)), -a1) s2 = ph.ScalarTerm( ph.Product( ph.SpatialDerivedFieldVariable("init_funcs_1", order=0, location=l), ph.TestFunction("init_funcs_1", order=0, location=l)), a2 * beta) s3 = ph.ScalarTerm( ph.Product( ph.SpatialDerivedFieldVariable("init_funcs_1", order=1, location=0), ph.TestFunction("init_funcs_1", order=0, location=0)), a2) s4 = ph.ScalarTerm( ph.Product( ph.Input(u), ph.TestFunction("init_funcs_1", order=0, location=l)), -a2) # derive state-space system rad_pde = sim.WeakFormulation( [int1, int2, int3, int4, s1, s2, s3, s4]) cf = sim.parse_weak_formulation(rad_pde) ss = cf.convert_to_state_space() # simulate system t, q = sim.simulate_state_space(ss, np.zeros(ini_funcs_1.shape), dt) # check if (x'(0,t_end) - 1.) < 0.1 self.assertLess( np.abs(ini_funcs_1[0].derive(1)(sys.float_info.min) * (q[-1, 0] - q[-1, 1])) - 1, 0.1) return t, q def test_rr(): # trajectory bound_cond_type = 'robin' actuation_type = 'robin' u = tr.RadTrajectory(l, T, param, bound_cond_type, actuation_type) # derive state-space system rad_pde = ut.get_parabolic_robin_weak_form("init_funcs_1", "init_funcs_1", u, param, dz.bounds) cf = sim.parse_weak_formulation(rad_pde) ss = cf.convert_to_state_space() # simulate system t, q = sim.simulate_state_space(ss, np.zeros(ini_funcs_1.shape), dt) # check if (x(0,t_end) - 1.) < 0.1 self.assertLess( np.abs(ini_funcs_1[0].derive(0)(0) * q[-1, 0]) - 1, 0.1) return t, q t, q = test_dr() _, _ = test_rr() # TODO: fit LagrangeSecondOrder to test_dd and test_rd # t, q = test_dd() # t, q = test_rd() # display results if show_plots: eval_d = sim.evaluate_approximation("init_funcs_1", q, t, dz, spat_order=1) win1 = vis.PgAnimatedPlot([eval_d], title="Test") win2 = vis.PgSurfacePlot(eval_d) app.exec_()
def test_it(self): actuation_type = 'robin' bound_cond_type = 'robin' param = [2., 1.5, -3., -1., -.5] adjoint_param = ef.get_adjoint_rad_evp_param(param) a2, a1, a0, alpha, beta = param l = 1. spatial_disc = 10 dz = sim.Domain(bounds=(0, l), num=spatial_disc) T = 1. temporal_disc = 1e2 dt = sim.Domain(bounds=(0, T), num=temporal_disc) n = 10 eig_freq, eig_val = ef.compute_rad_robin_eigenfrequencies(param, l, n) init_eig_funcs = np.array([ ef.SecondOrderRobinEigenfunction(om, param, dz.bounds) for om in eig_freq ]) init_adjoint_eig_funcs = np.array([ ef.SecondOrderRobinEigenfunction(om, adjoint_param, dz.bounds) for om in eig_freq ]) # normalize eigenfunctions and adjoint eigenfunctions adjoint_and_eig_funcs = [ cr.normalize_function(init_eig_funcs[i], init_adjoint_eig_funcs[i]) for i in range(n) ] eig_funcs = np.array([f_tuple[0] for f_tuple in adjoint_and_eig_funcs]) adjoint_eig_funcs = np.array( [f_tuple[1] for f_tuple in adjoint_and_eig_funcs]) # register eigenfunctions register_base("eig_funcs", eig_funcs, overwrite=True) register_base("adjoint_eig_funcs", adjoint_eig_funcs, overwrite=True) # derive initial field variable x(z,0) and weights start_state = cr.Function(lambda z: 0., domain=(0, l)) initial_weights = cr.project_on_base(start_state, adjoint_eig_funcs) # init trajectory u = tr.RadTrajectory(l, T, param, bound_cond_type, actuation_type) # determine (A,B) with weak-formulation (pyinduct) rad_pde = ut.get_parabolic_robin_weak_form("eig_funcs", "adjoint_eig_funcs", u, param, dz.bounds) cf = sim.parse_weak_formulation(rad_pde) ss_weak = cf.convert_to_state_space() # determine (A,B) with modal-transfomation A = np.diag(np.real_if_close(eig_val)) B = a2 * np.array( [adjoint_eig_funcs[i](l) for i in range(len(eig_freq))]) ss_modal = sim.StateSpace("eig_funcs", A, B, input_handle=u) # check if ss_modal.(A,B) is close to ss_weak.(A,B) self.assertTrue( np.allclose(np.sort(np.linalg.eigvals(ss_weak.A[1])), np.sort(np.linalg.eigvals(ss_modal.A[1])), rtol=1e-05, atol=0.)) self.assertTrue( np.allclose(np.array([i[0] for i in ss_weak.B[1]]), ss_modal.B[1])) # display results if show_plots: t, q = sim.simulate_state_space(ss_modal, initial_weights, dt) eval_d = sim.evaluate_approximation("eig_funcs", q, t, dz, spat_order=1) win1 = vis.PgAnimatedPlot([eval_d], title="Test") win2 = vis.PgSurfacePlot(eval_d) app.exec_()