Example #1
0
    def test_storage(self):
        a = np.eye(2, 2)
        b = np.array([[0], [1]])
        u = MonotonousInput()
        ic = np.zeros((2, 1))
        ss = sim.StateSpace("test", a, b, input_handle=u)

        # run simulation to fill the internal storage
        domain = sim.Domain((0, 10), step=.1)
        res = sim.simulate_state_space(ss, ic, domain)

        # don't return entries that are not there
        self.assertRaises(KeyError, u.get_results, domain, "Unknown Entry")

        # default key is "output"
        ed = u.get_results(domain)
        ed_explicit = u.get_results(domain, result_key="output")
        self.assertTrue(np.array_equal(ed, ed_explicit))

        # return np.ndarray as default
        self.assertIsInstance(ed, np.ndarray)

        # return EvalData if corresponding flag is set
        self.assertIsInstance(u.get_results(domain, as_eval_data=True),
                              sim.EvalData)
Example #2
0
    def test_call_arguments(self):
        a = np.eye(2, 2)
        b = np.array([[0], [1]])
        u = CorrectInput()
        ic = np.zeros((2, 1))
        ss = sim.StateSpace("test", {1: a}, {1: b}, input_handle=u)

        # if caller provides correct kwargs no exception should be raised
        res = sim.simulate_state_space(ss, ic, sim.Domain((0, 1), num=10))
Example #3
0
    def test_modal(self):
        self.act_funcs = "eig_funcs"
        a2, a1, a0, alpha, beta = self.param
        controller = ut.get_parabolic_robin_backstepping_controller(
            state=self.x_i_at_l,
            approx_state=self.x_i_at_l,
            d_approx_state=self.xd_i_at_l,
            approx_target_state=self.x_ti_at_l,
            d_approx_target_state=self.xd_ti_at_l,
            integral_kernel_zz=self.int_kernel_zz(self.l),
            original_beta=self.beta_i,
            target_beta=self.beta_ti,
            trajectory=self.traj,
            scale=self.transform_i(-self.l))

        # determine (A,B) with modal-transfomation
        A = np.diag(np.real(self.eig_val))
        B = a2 * np.array(
            [self.adjoint_eig_funcs[i](self.l) for i in range(self.n)])
        ss_modal = sim.StateSpace(self.act_funcs,
                                  A,
                                  B,
                                  input_handle=controller)

        # simulate
        self.t, self.q = sim.simulate_state_space(
            ss_modal, np.zeros((len(self.adjoint_eig_funcs))), self.dt)

        eval_d = sim.evaluate_approximation(self.act_funcs, self.q, self.t,
                                            self.dz)
        x_0t = eval_d.output_data[:, 0]
        yc, tc = tr.gevrey_tanh(self.T, 1)
        x_0t_desired = np.interp(self.t, tc, yc[0, :])
        self.assertLess(np.average((x_0t - x_0t_desired)**2), 1e-2)

        # display results
        if show_plots:
            win1 = vis.PgAnimatedPlot([eval_d], title="Test")
            win2 = vis.PgSurfacePlot(eval_d)
            app.exec_()
Example #4
0
controller = ct.Controller(ct.ControlLaw([ph.ScalarTerm(x_at_1, 1), ph.ScalarTerm(xt_at_1, -1)]))

# derive initial field variable x(z,0) and weights
start_state = cr.Function(lambda z: init_profile)
initial_weights = cr.project_on_base(start_state, eig_funcs)

# init trajectory
traj = tr.RadTrajectory(l, T, param_t, bound_cond_type, actuation_type)

# input with feedback
control_law = sim.SimulationInputSum([traj, controller])

# determine (A,B) with modal-transfomation
A = np.diag(eig_values)
B = -a2 * np.array([eig_funcs[i].derive()(l) for i in range(n)])
ss = sim.StateSpace("eig_funcs", A, B, input_handle=control_law)

# evaluate desired output data
z_d = np.linspace(0, l, len(spatial_domain))
y_d, t_d = tr.gevrey_tanh(T, 80)
C = tr.coefficient_recursion(np.zeros(y_d.shape), y_d, param)
x_l = tr.power_series(z_d, t_d, C)
evald_traj = vis.EvalData([t_d, z_d], x_l, name="x(z,t) desired")

# simulate
t, q = sim.simulate_state_space(ss, initial_weights, temporal_domain)

# pyqtgraph visualization
evald_x = sim.evaluate_approximation("eig_funcs", q, t, spatial_domain,
                                     name="x(z,t) with x(z,0)=" + str(init_profile))
win1 = vis.PgAnimatedPlot([evald_x, evald_traj], title="animation", dt=temporal_domain.step)
Example #5
0
    def test_it(self):
        # original system parameters
        a2 = 1.5
        a1 = 2.5
        a0 = 28
        alpha = -2
        beta = -3
        param = [a2, a1, a0, alpha, beta]
        adjoint_param = ef.get_adjoint_rad_evp_param(param)

        # target system parameters (controller parameters)
        a1_t = -5
        a0_t = -25
        alpha_t = 3
        beta_t = 2
        # a1_t = a1; a0_t = a0; alpha_t = alpha; beta_t = beta
        param_t = [a2, a1_t, a0_t, alpha_t, beta_t]

        # original intermediate ("_i") and traget intermediate ("_ti") system parameters
        _, _, a0_i, alpha_i, beta_i = ef.transform2intermediate(param)
        _, _, a0_ti, alpha_ti, beta_ti = ef.transform2intermediate(param_t)

        # system/simulation parameters
        actuation_type = 'robin'
        bound_cond_type = 'robin'
        self.l = 1.
        spatial_disc = 10
        dz = sim.Domain(bounds=(0, self.l), num=spatial_disc)

        T = 1.
        temporal_disc = 1e2
        dt = sim.Domain(bounds=(0, T), num=temporal_disc)
        n = 10

        # create (not normalized) eigenfunctions
        eig_freq, eig_val = ef.compute_rad_robin_eigenfrequencies(
            param, self.l, n)
        init_eig_funcs = np.array([
            ef.SecondOrderRobinEigenfunction(om, param, dz.bounds)
            for om in eig_freq
        ])
        init_adjoint_eig_funcs = np.array([
            ef.SecondOrderRobinEigenfunction(om, adjoint_param, dz.bounds)
            for om in eig_freq
        ])

        # normalize eigenfunctions and adjoint eigenfunctions
        adjoint_and_eig_funcs = [
            cr.normalize_function(init_eig_funcs[i], init_adjoint_eig_funcs[i])
            for i in range(n)
        ]
        eig_funcs = np.array([f_tuple[0] for f_tuple in adjoint_and_eig_funcs])
        adjoint_eig_funcs = np.array(
            [f_tuple[1] for f_tuple in adjoint_and_eig_funcs])

        # eigenfunctions from target system ("_t")
        eig_freq_t = np.sqrt(-a1_t**2 / 4 / a2**2 + (a0_t - eig_val) / a2)
        eig_funcs_t = np.array([
            ef.SecondOrderRobinEigenfunction(eig_freq_t[i], param_t,
                                             dz.bounds).scale(eig_funcs[i](0))
            for i in range(n)
        ])

        # register eigenfunctions
        register_base("eig_funcs", eig_funcs, overwrite=True)
        register_base("adjoint_eig_funcs", adjoint_eig_funcs, overwrite=True)
        register_base("eig_funcs_t", eig_funcs_t, overwrite=True)

        # derive initial field variable x(z,0) and weights
        start_state = cr.Function(lambda z: 0., domain=(0, self.l))
        initial_weights = cr.project_on_base(start_state, adjoint_eig_funcs)

        # controller initialization
        x_at_l = ph.FieldVariable("eig_funcs", location=self.l)
        xd_at_l = ph.SpatialDerivedFieldVariable("eig_funcs",
                                                 1,
                                                 location=self.l)
        x_t_at_l = ph.FieldVariable("eig_funcs_t",
                                    weight_label="eig_funcs",
                                    location=self.l)
        xd_t_at_l = ph.SpatialDerivedFieldVariable("eig_funcs_t",
                                                   1,
                                                   weight_label="eig_funcs",
                                                   location=self.l)
        combined_transform = lambda z: np.exp((a1_t - a1) / 2 / a2 * z)
        int_kernel_zz = lambda z: alpha_ti - alpha_i + (a0_i - a0_ti
                                                        ) / 2 / a2 * z
        controller = ct.Controller(
            ct.ControlLaw([
                ph.ScalarTerm(x_at_l,
                              (beta_i - beta_ti - int_kernel_zz(self.l))),
                ph.ScalarTerm(x_t_at_l, -beta_ti * combined_transform(self.l)),
                ph.ScalarTerm(x_at_l, beta_ti),
                ph.ScalarTerm(xd_t_at_l, -combined_transform(self.l)),
                ph.ScalarTerm(x_t_at_l,
                              -a1_t / 2 / a2 * combined_transform(self.l)),
                ph.ScalarTerm(xd_at_l, 1),
                ph.ScalarTerm(x_at_l, a1 / 2 / a2 + int_kernel_zz(self.l))
            ]))

        # init trajectory
        traj = tr.RadTrajectory(self.l, T, param_t, bound_cond_type,
                                actuation_type)
        traj.scale = combined_transform(self.l)

        # input with feedback
        control_law = sim.SimulationInputSum([traj, controller])
        # control_law = sim.simInputSum([traj])

        # determine (A,B) with modal-transformation
        A = np.diag(np.real(eig_val))
        B = a2 * np.array(
            [adjoint_eig_funcs[i](self.l) for i in range(len(eig_freq))])
        ss_modal = sim.StateSpace("eig_funcs", A, B, input_handle=control_law)

        # simulate
        t, q = sim.simulate_state_space(ss_modal, initial_weights, dt)

        eval_d = sim.evaluate_approximation("eig_funcs", q, t, dz)
        x_0t = eval_d.output_data[:, 0]
        yc, tc = tr.gevrey_tanh(T, 1)
        x_0t_desired = np.interp(t, tc, yc[0, :])
        self.assertLess(np.average((x_0t - x_0t_desired)**2), 1e-4)

        # display results
        if show_plots:
            win1 = vis.PgAnimatedPlot([eval_d], title="Test")
            win2 = vis.PgSurfacePlot(eval_d)
            app.exec_()
Example #6
0
    def test_it(self):
        # original system parameters
        a2 = 1
        a1 = 0  # attention: only a2 = 1., a1 =0 supported in this test case
        a0 = 0
        param = [a2, a1, a0, None, None]

        # target system parameters (controller parameters)
        a1_t = 0
        a0_t = 0  # attention: only a2 = 1., a1 =0 and a0 =0 supported in this test case
        param_t = [a2, a1_t, a0_t, None, None]

        # system/simulation parameters
        actuation_type = 'dirichlet'
        bound_cond_type = 'dirichlet'

        l = 1.
        spatial_disc = 10
        dz = sim.Domain(bounds=(0, l), num=spatial_disc)

        T = 1.
        temporal_disc = 1e2
        dt = sim.Domain(bounds=(0, T), num=temporal_disc)

        n = 10

        # eigenvalues /-functions original system
        eig_freq = np.array([(i + 1) * np.pi / l for i in range(n)])
        eig_values = a0 - a2 * eig_freq**2 - a1**2 / 4. / a2
        norm_fac = np.ones(eig_freq.shape) * np.sqrt(2)
        eig_funcs = np.asarray([
            ef.SecondOrderDirichletEigenfunction(eig_freq[i], param, dz.bounds,
                                                 norm_fac[i]) for i in range(n)
        ])
        register_base("eig_funcs", eig_funcs, overwrite=True)

        # eigenfunctions target system
        eig_freq_t = np.sqrt(-eig_values.astype(complex))
        norm_fac_t = norm_fac * eig_freq / eig_freq_t
        eig_funcs_t = np.asarray([
            ef.SecondOrderDirichletEigenfunction(eig_freq_t[i], param_t,
                                                 dz.bounds, norm_fac_t[i])
            for i in range(n)
        ])
        register_base("eig_funcs_t", eig_funcs_t, overwrite=True)

        # derive initial field variable x(z,0) and weights
        start_state = cr.Function(lambda z: 0., domain=(0, l))
        initial_weights = cr.project_on_base(start_state, eig_funcs)

        # init trajectory / input of target system
        traj = tr.RadTrajectory(l, T, param_t, bound_cond_type, actuation_type)

        # init controller
        x_at_1 = ph.FieldVariable("eig_funcs", location=1)
        xt_at_1 = ph.FieldVariable("eig_funcs_t",
                                   weight_label="eig_funcs",
                                   location=1)
        controller = ct.Controller(
            ct.ControlLaw(
                [ph.ScalarTerm(x_at_1, 1),
                 ph.ScalarTerm(xt_at_1, -1)]))

        # input with feedback
        control_law = sim.SimulationInputSum([traj, controller])

        # determine (A,B) with modal-transfomation
        A = np.diag(eig_values)
        B = -a2 * np.array([eig_funcs[i].derive()(l) for i in range(n)])
        ss = sim.StateSpace("eig_funcs", A, B, input_handle=control_law)

        # simulate
        t, q = sim.simulate_state_space(ss, initial_weights, dt)

        eval_d = sim.evaluate_approximation("eig_funcs", q, t, dz)
        x_0t = eval_d.output_data[:, 0]
        yc, tc = tr.gevrey_tanh(T, 1)
        x_0t_desired = np.interp(t, tc, yc[0, :])
        self.assertLess(np.average((x_0t - x_0t_desired)**2), 0.5)

        # display results
        if show_plots:
            eval_d = sim.evaluate_approximation("eig_funcs", q, t, dz)
            win2 = vis.PgSurfacePlot(eval_d)
            app.exec_()
Example #7
0
    def test_it(self):
        actuation_type = 'dirichlet'
        bound_cond_type = 'dirichlet'
        param = [1., -2., -1., None, None]
        adjoint_param = ef.get_adjoint_rad_evp_param(param)
        a2, a1, a0, _, _ = param

        l = 1.
        spatial_disc = 10
        dz = sim.Domain(bounds=(0, l), num=spatial_disc)

        T = 1.
        temporal_disc = 1e2
        dt = sim.Domain(bounds=(0, T), num=temporal_disc)

        omega = np.array([(i + 1) * np.pi / l for i in range(spatial_disc)])
        eig_values = a0 - a2 * omega**2 - a1**2 / 4. / a2
        norm_fak = np.ones(omega.shape) * np.sqrt(2)
        eig_funcs = np.array([
            ef.SecondOrderDirichletEigenfunction(omega[i], param, dz.bounds,
                                                 norm_fak[i])
            for i in range(spatial_disc)
        ])
        register_base("eig_funcs", eig_funcs, overwrite=True)
        adjoint_eig_funcs = np.array([
            ef.SecondOrderDirichletEigenfunction(omega[i], adjoint_param,
                                                 dz.bounds, norm_fak[i])
            for i in range(spatial_disc)
        ])
        register_base("adjoint_eig_funcs", adjoint_eig_funcs, overwrite=True)

        # derive initial field variable x(z,0) and weights
        start_state = cr.Function(lambda z: 0., domain=(0, l))
        initial_weights = cr.project_on_base(start_state, adjoint_eig_funcs)

        # init trajectory
        u = tr.RadTrajectory(l, T, param, bound_cond_type, actuation_type)

        # determine (A,B) with weak-formulation (pyinduct)

        # derive sate-space system
        rad_pde = ut.get_parabolic_dirichlet_weak_form("eig_funcs",
                                                       "adjoint_eig_funcs", u,
                                                       param, dz.bounds)
        cf = sim.parse_weak_formulation(rad_pde)
        ss_weak = cf.convert_to_state_space()

        # determine (A,B) with modal-transfomation
        A = np.diag(eig_values)
        B = -a2 * np.array(
            [adjoint_eig_funcs[i].derive()(l) for i in range(spatial_disc)])
        ss_modal = sim.StateSpace("eig_funcs", A, B, input_handle=u)

        # TODO: resolve the big tolerance (rtol=3e-01) between ss_modal.A and ss_weak.A
        # check if ss_modal.(A,B) is close to ss_weak.(A,B)
        self.assertTrue(
            np.allclose(np.sort(np.linalg.eigvals(ss_weak.A[1])),
                        np.sort(np.linalg.eigvals(ss_modal.A[1])),
                        rtol=3e-1,
                        atol=0.))
        self.assertTrue(
            np.allclose(np.array([i[0] for i in ss_weak.B[1]]), ss_modal.B[1]))

        # display results
        if show_plots:
            t, q = sim.simulate_state_space(ss_modal, initial_weights, dt)
            eval_d = sim.evaluate_approximation("eig_funcs",
                                                q,
                                                t,
                                                dz,
                                                spat_order=1)
            win2 = vis.PgSurfacePlot(eval_d)
            app.exec_()
Example #8
0
    def test_it(self):
        actuation_type = 'robin'
        bound_cond_type = 'robin'
        param = [2., 1.5, -3., -1., -.5]
        adjoint_param = ef.get_adjoint_rad_evp_param(param)
        a2, a1, a0, alpha, beta = param

        l = 1.
        spatial_disc = 10
        dz = sim.Domain(bounds=(0, l), num=spatial_disc)

        T = 1.
        temporal_disc = 1e2
        dt = sim.Domain(bounds=(0, T), num=temporal_disc)
        n = 10

        eig_freq, eig_val = ef.compute_rad_robin_eigenfrequencies(param, l, n)

        init_eig_funcs = np.array([
            ef.SecondOrderRobinEigenfunction(om, param, dz.bounds)
            for om in eig_freq
        ])
        init_adjoint_eig_funcs = np.array([
            ef.SecondOrderRobinEigenfunction(om, adjoint_param, dz.bounds)
            for om in eig_freq
        ])

        # normalize eigenfunctions and adjoint eigenfunctions
        adjoint_and_eig_funcs = [
            cr.normalize_function(init_eig_funcs[i], init_adjoint_eig_funcs[i])
            for i in range(n)
        ]
        eig_funcs = np.array([f_tuple[0] for f_tuple in adjoint_and_eig_funcs])
        adjoint_eig_funcs = np.array(
            [f_tuple[1] for f_tuple in adjoint_and_eig_funcs])

        # register eigenfunctions
        register_base("eig_funcs", eig_funcs, overwrite=True)
        register_base("adjoint_eig_funcs", adjoint_eig_funcs, overwrite=True)

        # derive initial field variable x(z,0) and weights
        start_state = cr.Function(lambda z: 0., domain=(0, l))
        initial_weights = cr.project_on_base(start_state, adjoint_eig_funcs)

        # init trajectory
        u = tr.RadTrajectory(l, T, param, bound_cond_type, actuation_type)

        # determine (A,B) with weak-formulation (pyinduct)
        rad_pde = ut.get_parabolic_robin_weak_form("eig_funcs",
                                                   "adjoint_eig_funcs", u,
                                                   param, dz.bounds)
        cf = sim.parse_weak_formulation(rad_pde)
        ss_weak = cf.convert_to_state_space()

        # determine (A,B) with modal-transfomation
        A = np.diag(np.real_if_close(eig_val))
        B = a2 * np.array(
            [adjoint_eig_funcs[i](l) for i in range(len(eig_freq))])
        ss_modal = sim.StateSpace("eig_funcs", A, B, input_handle=u)

        # check if ss_modal.(A,B) is close to ss_weak.(A,B)
        self.assertTrue(
            np.allclose(np.sort(np.linalg.eigvals(ss_weak.A[1])),
                        np.sort(np.linalg.eigvals(ss_modal.A[1])),
                        rtol=1e-05,
                        atol=0.))
        self.assertTrue(
            np.allclose(np.array([i[0] for i in ss_weak.B[1]]), ss_modal.B[1]))

        # display results
        if show_plots:
            t, q = sim.simulate_state_space(ss_modal, initial_weights, dt)
            eval_d = sim.evaluate_approximation("eig_funcs",
                                                q,
                                                t,
                                                dz,
                                                spat_order=1)
            win1 = vis.PgAnimatedPlot([eval_d], title="Test")
            win2 = vis.PgSurfacePlot(eval_d)
            app.exec_()