Example #1
0
    def dmlpred(self):
        self._mdmlalist = []
        out = True
        self.verbose("Hosting DML test")
        for i in range(self._hostnum):
            conn = self._mdmlconnlist[i]
            rcv = smsg.recv(conn)
            if (rcv == None):
                self.error("aggregate rcv has failed from donor", i)
                out = False  #Error occurred
            else:
                ra = deserialize(rcv)
                #ra = numpy.array( json.loads(rcv))
                self._mdmlalist.append(ra)
            conn.send('ACKN'.encode('utf-8'))

        if (len(self._mdmlalist) < 1):
            self.error("No aggregates received, Aborting")
            out = False  #Error occurred
            self.__abortAll()
        else:
            asum = numpy.zeros(self._mdmlalist[0].shape, dtype=self.compd)
            for i, a in enumerate(self._mdmlalist):
                self.info("aggregate", i, a.shape)
                asum = a + asum

            # only test against the first TODO: selectable testing
            for i in range(self._hostnum):
                conn = self._mdmlconnlist[i]
                dumped = serialize(asum)
                smsg.send(conn, dumped)
            self.verbose("DML done. ASUM pushed to donors")
        return out
Example #2
0
 def negotiate(self, ahostaddr):
     '''start negotation, first sends in the donor's own prepared negform to inform the
     central about the number of entries/features, it is expected that _mDmat is read
     from a file/stdin before this 
     @params ahostaddr - a tuple ('localhost',portnumber i.e 8000)'''
     _mnegform = NegForm(self)  #creates the negotiation form
     self.verbose("Negform created. Beginning Negotation...")
     try:
         negstr = json.dumps(
             _mnegform.primary)  #obtains the primary neg data
         self._msocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
         self._msocket.connect(
             ahostaddr)  #attempting to connect to the host (central)
         self.debug("Host connected. Sending negstr")
         smsg.send(self._msocket, negstr)
         self.debug(
             "Negotiation form sent to central. Awaiting synchronization")
         self._mnegform = NegForm(json.loads(smsg.recv(self._msocket)))
         self.info("Synchronized form:")
         self._mnegform.display()
         self.partition_internals(self._mnegform.primary["bsize"])
         self.kernel = self._npdc.computeKernel()
         if not type(self.kernel) == numpy.ndarray:
             self.warn("Kernel computational error!")
         else:
             self.verbose("Partitioned and computed the kernel",
                          self.kernel.shape)
     except Exception as e:
         self.expt(str(e), traceback.format_exc())
     finally:
         return self.hasNegotiated()
Example #3
0
 def negotiate(self,ahostaddr,train=True):
     '''start negotation, first sends in the donor's own prepared negform to inform the
     central about the number of entries/features, it is expected that _mDmat is read
     from a file/stdin before this 
     @params ahostaddr - a tuple ('localhost',portnumber i.e 8000)'''
     if( train ):
         # TRAINING MODE
         _mnegform = NegForm(self) #creates the negotiation form
         self.verbose("Negform created. Beginning Negotation...")
         try:
             negstr = json.dumps(_mnegform.primary) #obtains the primary neg data
             self._msocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
             self._msocket.connect( ahostaddr ) #attempting to connect to the host (central)
             self.debug("Host connected. Sending negstr")
             smsg.send( self._msocket, negstr )
             self.debug("Negotiation form sent to central. Awaiting synchronization")
             self._mnegform = NegForm( json.loads( smsg.recv( self._msocket ) ) )
             self.info("Synchronized form:")
             self._mnegform.display()
         except Exception as e:
             self.expt(str(e),traceback.format_exc())
         finally:
             return self.hasNegotiated()
     else:
         # PREDICTION MODE
         try:
             self._msocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
             self._msocket.connect( ahostaddr )
             return True
         except Exception as e:
             self.expt(str(e),traceback.format_exc())
             return False
Example #4
0
    def connpred(self):
        #TODO: figure out how to implement this
        if( self.isTrained ):
            aggregate = self._npdc.df.dot( self._mweights )
            self.verbose("Sending test prediction to central",aggregate.shape)
            #self.raw( aggregate )
            dumped = serialize( aggregate )
            smsg.send( self._msocket, dumped )
            repmsg = self._msocket.recv(4)
            if( repmsg.decode('utf-8') == "ACKN" ):
                #proceed
                self.info("All Aggregates sent. Awaiting results.") 

                rcv = smsg.recv( self._msocket )
                if(rcv != None):
                    try:
                        if( rcv.decode('utf-8') == 'ABRT'):
                            self.error("Abort request by central.")
                    except UnicodeDecodeError:
                        self._mres = deserialize( rcv )
                        self.verbose("Received DML pred results:")
                        self.info( self._mres )
                        return True
                else:
                    self.error("rcv is null. Receiving error on _mres")
            else:
                self.error("Failed to receive ACKN from host. Terminating conntest")
        else:
            self.error("Weights not available. Is the donor trained ?")
        return False
Example #5
0
    def conntrain(self,targetname=None):
        '''conntrain should begin connection with the central, send in the
        _mDmat_train and (if it has the target) _mTvct_train. await response
        from server and fill in the received alpha to _mdist_alpha'''
        if( self.hasNegotiated() ):
            self.targetname = targetname

            if(self.targetname is not None):
                self.train_x, self.test_x, self.train_y, self.test_y = \
                        self._npdc.obtrain( self._mnegform.primary["bsize"] , targetname )
            else:
                self.train_x, self.test_x = self._npdc.obtrain( self._mnegform.primary["bsize"] )
            self.kernel = computeKernel( self.train_x )
            if not type(self.kernel) == numpy.ndarray:
                self.warn("Kernel computational error!")
            else:
                self.verbose("Partitioned and computed the kernel",self.kernel.shape)
            self.verbose("Sending kernel to central")
            #dumped = json.dumps( self.kernel.tolist() ) # THIS line is crashing the system (for size 10k)
            self.debug("Training headers (include targets) :")
            self.raw( self._npdc.hlist )
            dumped = serialize( self.kernel )
            self.verbose("Total serial dump: {} bytes".format(len(dumped)))
            smsg.send( self._msocket, dumped ) #json dump and send the array
            # await confirmation
            repmsg = self._msocket.recv(4)
            if( repmsg.decode('utf-8') == "ACKN" ):
                # proceed
                if( self.targetname is not None ):
                    # dump the target_train to bytes and send it on over socket
                    dumped = serialize( self.train_y )
                    smsg.send( self._msocket, dumped) 
                # await for alpha
                self.info("All Kernels sent. Awaiting central response.")

                rcv = smsg.recv( self._msocket )
                if(rcv != None):
                    try:
                        if( rcv.decode('utf-8') == 'ABRT'):
                            self.error("Abort request by central.")
                            self.hasAlpha = False
                    except UnicodeDecodeError :
                        self.verbose("Unicode decode failed. Proceeding with deserialization")
                        self._mdistalpha = deserialize(rcv)
                        self.info("Distributed alpha received.")
                        self.hasAlpha=True
                        self.recover_weights() # perform weight recovery
                else:
                    self.error("rcv is null. Receiving error _mdistalpha")
                    self.hasAlpha = False
            else:
                #failed
                self.error("Failed to receive ACKN from host. Terminating conntrain")
                self.hasAlpha = False
        else:
            self.error("This donor has not synchronized the params with the central,\
                    please run negotiate( addr ) first !")
            self.hasAlpha = False
        return self.hasAlpha
Example #6
0
    def conntrain(self):
        '''conntrain should begin connection with the central, send in the
        _mDmat_train and (if it has the target) _mTvct_train. await response
        from server and fill in the received alpha to _mdist_alpha'''
        if (self.hasNegotiated()):
            self.verbose("Sending kernel to central")
            #dumped = json.dumps( self.kernel.tolist() ) # THIS line is crashing the system (for size 10k)

            dumped = serialize(self.kernel)
            self.verbose("Total serial dump: {} bytes".format(len(dumped)))
            smsg.send(self._msocket, dumped)  #json dump and send the array
            # await confirmation
            repmsg = self._msocket.recv(4)
            if (repmsg.decode('utf-8') == "ACKN"):
                # proceed
                if (self.hasTarget):
                    # dump the target_train to bytes and send it on over socket
                    dumped = serialize(
                        self._npdc.get(side='target', batch='train'))
                    smsg.send(self._msocket, dumped)
                # await for alpha
                self.info("All Kernels sent. Awaiting central response.")

                rcv = smsg.recv(self._msocket)
                if (rcv != None):
                    try:
                        if (rcv.decode('utf-8') == 'ABRT'):
                            self.error("Abort request by central.")
                            self.hasAlpha = False
                    except UnicodeDecodeError:
                        self.verbose(
                            "Unicode decode failed. Proceeding with deserialization"
                        )
                        self._mdistalpha = deserialize(rcv)
                        self.info("Distributed alpha received.")
                        self.hasAlpha = True
                        self.recover_weights()  # perform weight recovery
                else:
                    self.error("rcv is null. Receiving error _mdistalpha")
                    self.hasAlpha = False
            else:
                #failed
                self.error(
                    "Failed to receive ACKN from host. Terminating conntrain")
                self.hasAlpha = False
        else:
            self.error(
                "This donor has not synchronized the params with the central,\
                    please run negotiate( addr ) first !")
            self.hasAlpha = False
        return self.hasAlpha
Example #7
0
    def conntest(self):
        '''conntest should begin connection with the central, send in the 
        _mDmat_train and (if it has the target) _mTvct_train. await response
        from server which it will return the error rating of the model
        RETURNS True upon No errors. False otherwise'''
        if (self.isTrained):
            aggregate = self._npdc.get(side="data",
                                       batch="test").dot(self._mweights)
            self.verbose("Sending test prediction to central", aggregate.shape)
            #self.raw( aggregate )
            dumped = serialize(aggregate)
            smsg.send(self._msocket, dumped)
            repmsg = self._msocket.recv(4)
            if (repmsg.decode('utf-8') == "ACKN"):
                #proceed
                if (self.hasTarget):
                    # dump the target_test to bytes and send it on over socket
                    dumped = serialize(
                        self._npdc.get(side='target', batch='test'))
                    smsg.send(self._msocket, dumped)
                    #await for test results
                    self.info("All Aggregates sent. Awaiting results.")

                rcv = smsg.recv(self._msocket)
                if (rcv != None):
                    if (rcv.decode('utf-8') == 'ABRT'):
                        self.error("Abort request by central.")
                    else:
                        self._mres = json.loads(rcv)
                        self.verbose("Received DML test results:")
                        self.info("MSE:", self._mres.get("mse"))
                        self.info("R2S:", self._mres.get("r2s"))
                        return True
                else:
                    self.error("rcv is null. Receiving error on _mres")
            else:
                self.error(
                    "Failed to receive ACKN from host. Terminating conntest")
        else:
            self.error("Weights not available. Is the donor trained ?")
        return False
Example #8
0
    def dmltrain(self):
        '''dmltrain should start listen on the ahostaddr bounded during negotations,
        and attempts to receive the numpy arrays obtained from the various donors.
        it then has to generate the distributed alpha from the operations'''
        self._mdmlklist = []
        self._mdmltlist = []
        out = True
        if (self.hasNegotiated()):
            f = StringIO()
            lval = self._mnegformlist[0].primary['rrlambda']
            self.verbose("Hosting DML training lval:", lval, "bsize:",
                         self._mnegformlist[0].primary['bsize'])
            for i in range(self._hostnum):
                conn = self._mdmlconnlist[i]
                self.verbose("Receiving kernel from donor", i)

                rcv = smsg.recv(conn)
                if (rcv == None):
                    self.error("kernel rcv has failed from donor", i)
                    out = False
                else:
                    rk = deserialize(rcv)
                    #rk = numpy.array(json.loads( rcv ))
                    self.verbose("kernel rcv has succeeded from donor", i)
                    self._mdmlklist.append(rk)
                # sends the ACK
                conn.send('ACKN'.encode('utf-8'))
                if (self._mnegformlist[i].primary['dflag']):
                    # this donor possess target, receives it
                    rcv = smsg.recv(conn)
                    if (rcv == None):
                        self.error("train targets rcv has failed from donor",
                                   i)
                        out = False
                    else:
                        rt = deserialize(rcv)
                        #rt = numpy.array(json.loads( rcv ))
                        self._mdmltlist.append(rt)

            if (len(self._mdmlklist) < 1):
                self.error("No kernels received")
                out = False
                self.__abortAll()
            elif (len(self._mdmltlist) < 1):
                self.error(
                    "No Targets. Please check if target donor is specified correctly"
                )
                out = False
                self.__abortAll()
            else:
                # all kernels and targets received
                # sum all kernels
                ksum = numpy.zeros(self._mdmlklist[0].shape, dtype=self.compd)
                for i, k in enumerate(self._mdmlklist):
                    self.info("kernel", i, k.shape)
                    ksum += k

                # only train against the first TODO : selectable training
                targ = self._mdmltlist[0]
                self.verbose("Starting Ridge Solver")
                if (len(targ.shape) < 2):
                    tdim = 1
                else:
                    tdim = targ.shape[1]
                alpha = pyplasma.ridge_solve(ksum.flatten(),
                                             ksum.shape[0], ksum.shape[1],
                                             targ.flatten(), targ.shape[0],
                                             tdim, lval, 1,
                                             ksum.shape[0] * tdim)
                self.info("Alpha meta:", type(alpha), alpha.shape)

                dumped = serialize(alpha)
                for i in range(self._hostnum):
                    conn = self._mdmlconnlist[i]
                    smsg.send(conn, dumped)  #dump to bytes and send
                self.info("DML training complete")
        self.donorTrained = out
        return out
Example #9
0
 def __abortAll(self):
     for i in range(self._hostnum):
         conn = self._mdmlconnlist[i]
         smsg.send(conn, "ABRT")  #send the abort message to all host
Example #10
0
    def host_negotiations(self,
                          asrvaddr,
                          batchfactor=0.1,
                          rrlambda=1.0,
                          train=True):
        '''begins negotiations by listening on ahostaddr. receives the negform and syncs
        them up with the donors
        @params ahostaddr - a tuple ('localhost',portnumber i.e 8000)
        @params batchfactor - the value to batch up the train/test set
        @params rrlamdda - the ridge regressor's hyperparam'''
        # the host are indexed based on the order in which they connect
        self._mdmlconnlist = []
        self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
        if (train):
            # TRAINING MODE
            self.verbose("Negotiation for DML TRAIN")
            self._mnegformlist = []
            try:
                self.sock.bind(asrvaddr)
                self.sock.listen(self._hostnum)
                # Negotiations round 1
                for i in range(self._hostnum):
                    self.debug("Listening on address:", asrvaddr)
                    connection, rcliaddr = self.sock.accept()
                    self.debug("Connection established with", rcliaddr)
                    # receives the json obj
                    negf = NegForm(json.loads(smsg.recv(connection)))
                    negf.display()
                    self._mnegformlist.append(negf)
                    self._mdmlconnlist.append(connection)

                # Process to formulate the batchsizes
                bsize = aux.evaluate_bsize(aux.find_minesz(self._mnegformlist),
                                           batchfactor)
                self.info("bsize decided on", bsize)

                # Negotiations round 2
                for i in range(self._hostnum):
                    self._mnegformlist[i].primary['bsize'] = bsize
                    self._mnegformlist[i].primary['rrlambda'] = rrlambda
                    smsg.send(self._mdmlconnlist[i],
                              json.dumps(self._mnegformlist[i].primary))
                    self.debug("Negotiation forms pushed back to host", i)
            except Exception as e:
                self.expt(str(e), traceback.format_exc())
            finally:
                return self.hasNegotiated()
        else:
            # PREDICTION MODE
            self.verbose("Negotiation for DML PRED")
            try:
                self.sock.bind(asrvaddr)
                self.sock.listen(self._hostnum)
                for i in range(self._hostnum):
                    self.debug("Listening on address:", asrvaddr)
                    connection, rcliaddr = self.sock.accept()
                    self.debug("Connection established with", rcliaddr)
                    self._mdmlconnlist.append(connection)
                return True
            except Exception as e:
                self.expt(str(e), traceback.format_exc())
                return False
Example #11
0
    def dmltest(self):
        '''dmltest should start to listen on the _npdc_hostadr bounded during negotiations,
        and attempts to receive the numpy arrays (TEST BATCH) from the same donors, 
        it then returns the evaluation metrics
        RETURNS Ture upon No errors. False otherwise'''
        self._mdmlalist = []
        self._mdmlvlist = []
        out = True
        if (self.hasNegotiated() and self.donorTrained):
            self.verbose("Hosting DML test")
            for i in range(self._hostnum):
                conn = self._mdmlconnlist[i]
                rcv = smsg.recv(conn)
                if (rcv == None):
                    self.error("aggregate rcv has failed from donor", i)
                    out = False  #Error occurred
                else:
                    ra = deserialize(rcv)
                    #ra = numpy.array( json.loads(rcv))
                    self._mdmlalist.append(ra)
                conn.send('ACKN'.encode('utf-8'))
                if (self._mnegformlist[i].primary['dflag']):
                    rcv = smsg.recv(conn)
                    if (rcv == None):
                        self.error("test targets rcv has failed from donor", i)
                        out = False  #Error occurred
                    else:
                        rt = deserialize(rcv)
                        #rt = numpy.array(json.loads(rcv))
                        self._mdmlvlist.append(rt)
                        self.verbose("received test targets from donor", i)

            if (len(self._mdmlalist) < 1):
                self.error("No aggregates received, Aborting")
                out = False  #Error occurred
                self.__abortAll()
            if (len(self._mdmlvlist) < 1):
                self.error(
                    "No verifying targets. Is target donor specified correctly?"
                )
                out = False
                self.__abortAll()
            else:
                asum = numpy.zeros(self._mdmlalist[0].shape, dtype=self.compd)
                for i, a in enumerate(self._mdmlalist):
                    self.info("aggregate", i, a.shape)
                    asum = a + asum

                # only test against the first TODO: selectable testing

                varg = self._mdmlvlist[0]
                jrep = {
                    "mse": mean_squared_error(asum, varg),
                    "mae": mean_absolute_error(asum, varg),
                    "max": max_error(asum, varg),
                    "evs": explained_variance_score(asum, varg),
                    "r2s": r2_score(asum, varg)
                }
                self.verbose("mse", jrep.get("mse"))
                self.verbose("mae", jrep.get("mae"))
                self.verbose("max", jrep.get("max"))
                self.verbose("evs", jrep.get("evs"))
                self.verbose("r2s", jrep.get("r2s"))

                for i in range(self._hostnum):
                    conn = self._mdmlconnlist[i]
                    smsg.send(conn, json.dumps(jrep))
                self.verbose("DML done. JREP pushed to donors")
        else:
            self.error(
                "Not negotiated or donor is not trained yet, unable to test")
            out = False
        return out