_default_config = { 'loader': DataLoader, 'loader__configuration_file': conf_file, 'loader__loader': 'bids-meg', 'loader__bids_win': '700', 'loader__task': 'reftep', 'loader__load_fx': 'reftep-iplv', 'fetch__subject_names': ['sub-1'], 'fetch__prepro': [Transformer()], 'prepro': ['sample_slicer', 'target_transformer'], 'target_transformer__fx': lambda x: np.log(x), 'balancer__attr': 'all', 'estimator': [ #('fsel', SelectKBest(k=50, score_func=f_regression)), ('clf', SVR(C=1, kernel='linear')) ], 'cv': ShuffleSplit, 'cv__n_splits': 2, #'cv__test_size': 0.25, 'analysis__scoring': ['r2', 'explained_variance'], 'analysis':
cross_val_multiscore, LinearModel, get_coef, Vectorizer, CSP) from sklearn.linear_model import LogisticRegression import warnings warnings.filterwarnings("ignore") conf_file = "/media/robbis/DATA/meg/c2b/meeting-december-data/bids.conf" loader = DataLoader(configuration_file=conf_file, loader='bids-meg', bids_window='300', bids_ses='01', task='power') ds = loader.fetch(subject_names=['sub-109123'], prepro=[Transformer()]) _default_options = { 'loader__bids_ses': ['01', '02'], 'sample_slicer__targets' : [ ['LH', 'RH'], ['LF', 'RF'], #['LH', 'RH', 'LF', 'RF'] ], 'estimator__clf': [ LinearModel(LogisticRegression(C=1, solver='liblinear')), SVC(C=1, kernel='linear', probability=True), SVC(C=1, gamma=1, kernel='rbf', probability=True),
from joblib import Parallel, delayed path = "/media/robbis/Seagate_Pt1/data/working_memory/" conf_file = "%s/data/working_memory.conf" % (path) task = 'PSI' task = 'PSICORR' loader = DataLoader(configuration_file=conf_file, loader='mat', task=task, data_path="%s/data/" % (path), subjects="%s/data/participants.csv" % (path)) prepro = PreprocessingPipeline(nodes=[ Transformer(), #SampleZNormalizer() ]) ds = loader.fetch(prepro=prepro) _default_options = { 'sample_slicer__targets': [['0back', '2back']], 'sample_slicer__band': [[c] for c in np.unique(ds.sa.band)], 'estimator__fsel__k': np.arange(1, 1200, 50), } _default_config = { 'prepro': ['sample_slicer'], #'ds_normalizer__ds_fx': np.std, 'sample_slicer__band': ['gamma'],
import warnings warnings.filterwarnings("ignore") from pyitab.utils import make_analysis path = "/media/robbis/DATA/fmri/" analysis = 'bunch-of-things' conf_file = make_analysis(path, analysis) loader = DataLoader(configuration_file=conf_file, loader='simulations', task='simulations') ds = loader.fetch(prepro=Transformer()) _default_options = { 'sample_slicer__targets': [ ['LH', 'RH'], #['LF', 'RF'], #['LH', 'RH', 'LF', 'RF'] ], 'estimator__clf': [ SVC(C=1, kernel='linear', probability=True), SVC(C=1, gamma=1, kernel='rbf', probability=True), LinearDiscriminantAnalysis(), QuadraticDiscriminantAnalysis(), GaussianProcessClassifier(1 * RBF(1.)) ], #'estimator__fsel__k':np.arange(50, 100, 5),