Example #1
0
_default_config = {
    'loader':
    DataLoader,
    'loader__configuration_file':
    conf_file,
    'loader__loader':
    'bids-meg',
    'loader__bids_win':
    '700',
    'loader__task':
    'reftep',
    'loader__load_fx':
    'reftep-iplv',
    'fetch__subject_names': ['sub-1'],
    'fetch__prepro': [Transformer()],
    'prepro': ['sample_slicer', 'target_transformer'],
    'target_transformer__fx':
    lambda x: np.log(x),
    'balancer__attr':
    'all',
    'estimator': [  #('fsel', SelectKBest(k=50, score_func=f_regression)),
        ('clf', SVR(C=1, kernel='linear'))
    ],
    'cv':
    ShuffleSplit,
    'cv__n_splits':
    2,
    #'cv__test_size': 0.25,
    'analysis__scoring': ['r2', 'explained_variance'],
    'analysis':
Example #2
0
                          cross_val_multiscore, LinearModel, get_coef,
                          Vectorizer, CSP)
from sklearn.linear_model import LogisticRegression

import warnings
warnings.filterwarnings("ignore")
 
conf_file = "/media/robbis/DATA/meg/c2b/meeting-december-data/bids.conf"

loader = DataLoader(configuration_file=conf_file, 
                    loader='bids-meg',
                    bids_window='300',
                    bids_ses='01',
                    task='power')

ds = loader.fetch(subject_names=['sub-109123'], prepro=[Transformer()])
    
_default_options = {
                       
                       'loader__bids_ses': ['01', '02'],
                       
                       'sample_slicer__targets' : [
                           ['LH', 'RH'], 
                           ['LF', 'RF'], 
                           #['LH', 'RH', 'LF', 'RF']
                        ],

                       'estimator__clf': [
                           LinearModel(LogisticRegression(C=1, solver='liblinear')),
                           SVC(C=1, kernel='linear', probability=True),
                           SVC(C=1, gamma=1, kernel='rbf', probability=True),
Example #3
0
from joblib import Parallel, delayed

path = "/media/robbis/Seagate_Pt1/data/working_memory/"
conf_file = "%s/data/working_memory.conf" % (path)

task = 'PSI'
task = 'PSICORR'

loader = DataLoader(configuration_file=conf_file,
                    loader='mat',
                    task=task,
                    data_path="%s/data/" % (path),
                    subjects="%s/data/participants.csv" % (path))

prepro = PreprocessingPipeline(nodes=[
    Transformer(),
    #SampleZNormalizer()
])

ds = loader.fetch(prepro=prepro)

_default_options = {
    'sample_slicer__targets': [['0back', '2back']],
    'sample_slicer__band': [[c] for c in np.unique(ds.sa.band)],
    'estimator__fsel__k': np.arange(1, 1200, 50),
}

_default_config = {
    'prepro': ['sample_slicer'],
    #'ds_normalizer__ds_fx': np.std,
    'sample_slicer__band': ['gamma'],
Example #4
0
import warnings

warnings.filterwarnings("ignore")

from pyitab.utils import make_analysis

path = "/media/robbis/DATA/fmri/"
analysis = 'bunch-of-things'
conf_file = make_analysis(path, analysis)

loader = DataLoader(configuration_file=conf_file,
                    loader='simulations',
                    task='simulations')

ds = loader.fetch(prepro=Transformer())

_default_options = {
    'sample_slicer__targets': [
        ['LH', 'RH'],
        #['LF', 'RF'],
        #['LH', 'RH', 'LF', 'RF']
    ],
    'estimator__clf': [
        SVC(C=1, kernel='linear', probability=True),
        SVC(C=1, gamma=1, kernel='rbf', probability=True),
        LinearDiscriminantAnalysis(),
        QuadraticDiscriminantAnalysis(),
        GaussianProcessClassifier(1 * RBF(1.))
    ],
    #'estimator__fsel__k':np.arange(50, 100, 5),