Example #1
0
    def test_dymola_export_import(self):
        """
        Test for export and import the result file on Dymola textual format.
        """
        vdp = self.vdp

        # Initialize the mesh
        n_e = 50  # Number of elements
        hs = N.ones(n_e) * 1. / n_e  # Equidistant points
        n_cp = 3
        # Number of collocation points in each element

        # Create an NLP object
        nlp = ipopt.NLPCollocationLagrangePolynomials(vdp, n_e, hs, n_cp)

        # Create an Ipopt NLP object
        nlp_ipopt = ipopt.CollocationOptimizer(nlp)

        # Solve the optimization problem
        nlp_ipopt.opt_coll_ipopt_solve()

        # Get the result
        p_opt, traj = nlp.get_result()

        # Write to file
        nlp.export_result_dymola()

        # Load the file we just wrote
        res = ResultDymolaTextual(self.fname[:-len('.jmu')] + '_result.txt')

        # Check that one of the trajectories match.
        assert max(N.abs(traj[:, 3] - res.get_variable_data('x1').x)) < 1e-12

        # Check that the value of the cost function is correct
        assert N.abs(p_opt[0] - 2.2811587) < 1e-5
Example #2
0
 def setUp(self):
     """Test setUp. Load the test model."""   
     cpath_vdp = "VDP_pack.VDP_Opt_Min_Time"
     fname_vdp = cpath_vdp.replace('.','_',1)
     self.fname_vdp = fname_vdp   
     self.vdp = JMUModel(fname_vdp+'.jmu')
     # Initialize the mesh
     n_e = 100 # Number of elements 
     hs = N.ones(n_e)*1./n_e # Equidistant points
     self.hs = hs
     n_cp = 3; # Number of collocation points in each element
     
     # Create an NLP object
     self.nlp = ipopt.NLPCollocationLagrangePolynomials(
         self.vdp,n_e,hs,n_cp)
     self.nlp_ipopt = ipopt.CollocationOptimizer(self.nlp)
Example #3
0
def run_demo(with_plots=True):
    """ 
    Model predicitve control of the Hicks-Ray CSTR reactor. This example 
    demonstrates how to use the blocking factor feature of the collocation 
    algorithm.

    This example also shows how to use classes for initialization, simulation 
    and optimization directly rather than calling then through the high-level 
    classes 'initialialize', 'simulate' and 'optimize'.
    """

    curr_dir = os.path.dirname(os.path.abspath(__file__))

    # Compile the stationary initialization model into a JMU
    jmu_name = compile_jmu("CSTR.CSTR_Init",
                           os.path.join(curr_dir, "files", "CSTR.mop"))

    # Load a JMUModel instance
    init_model = JMUModel(jmu_name)

    # Create DAE initialization object.
    init_nlp = NLPInitialization(init_model)

    # Create an Ipopt solver object for the DAE initialization system
    init_nlp_ipopt = InitializationOptimizer(init_nlp)

    def compute_stationary(Tc_stat):
        init_model.set('Tc', Tc_stat)
        # Solve the DAE initialization system with Ipopt
        init_nlp_ipopt.init_opt_ipopt_solve()
        return (init_model.get('c'), init_model.get('T'))

    # Set inputs for Stationary point A
    Tc_0_A = 250
    c_0_A, T_0_A = compute_stationary(Tc_0_A)

    # Print some data for stationary point A
    print(' *** Stationary point A ***')
    print('Tc = %f' % Tc_0_A)
    print('c = %f' % c_0_A)
    print('T = %f' % T_0_A)

    # Set inputs for Stationary point B
    Tc_0_B = 280
    c_0_B, T_0_B = compute_stationary(Tc_0_B)

    # Print some data for stationary point B
    print(' *** Stationary point B ***')
    print('Tc = %f' % Tc_0_B)
    print('c = %f' % c_0_B)
    print('T = %f' % T_0_B)

    jmu_name = compile_jmu("CSTR.CSTR_Opt_MPC",
                           os.path.join(curr_dir, "files", "CSTR.mop"))

    cstr = JMUModel(jmu_name)

    cstr.set('Tc_ref', Tc_0_B)
    cstr.set('c_ref', c_0_B)
    cstr.set('T_ref', T_0_B)

    cstr.set('cstr.c_init', c_0_A)
    cstr.set('cstr.T_init', T_0_A)

    # Initialize the mesh
    n_e = 50  # Number of elements
    hs = N.ones(n_e) * 1. / n_e  # Equidistant points
    n_cp = 3
    # Number of collocation points in each element

    # Create an NLP object
    # The length of the optimization interval is 50s and the
    # number of elements is 50, which gives a blocking factor
    # vector of 2*ones(n_e/2) to match the sampling interval
    # of 2s.
    nlp = ipopt.NLPCollocationLagrangePolynomials(cstr,
                                                  n_e,
                                                  hs,
                                                  n_cp,
                                                  blocking_factors=2 *
                                                  N.ones(n_e / 2, dtype=N.int))

    # Create an Ipopt NLP object
    nlp_ipopt = ipopt.CollocationOptimizer(nlp)

    nlp_ipopt.opt_coll_ipopt_set_int_option("max_iter", 500)

    h = 2.  # Sampling interval
    T_final = 180.  # Final time of simulation
    t_mpc = N.linspace(0, T_final, T_final / h + 1)
    n_samples = N.size(t_mpc)

    ref_mpc = N.zeros(n_samples)
    ref_mpc[0:3] = N.ones(3) * Tc_0_A
    ref_mpc[3:] = N.ones(n_samples - 3) * Tc_0_B

    cstr.set('cstr.c_init', c_0_A)
    cstr.set('cstr.T_init', T_0_A)

    # Compile the simulation model into a DLL
    jmu_name = compile_jmu("CSTR.CSTR",
                           os.path.join(curr_dir, "files", "CSTR.mop"))

    # Load a model instance into Python
    sim_model = JMUModel(jmu_name)

    sim_model.set('c_init', c_0_A)
    sim_model.set('T_init', T_0_A)

    global cstr_mod
    global cstr_sim

    cstr_mod = JMIDAE(sim_model)  # Create an Assimulo problem
    cstr_sim = IDA(cstr_mod)  # Create an IDA solver

    i = 0

    if with_plots:
        plt.figure(4)
        plt.clf()

    for t in t_mpc[0:-1]:
        Tc_ref = ref_mpc[i]
        c_ref, T_ref = compute_stationary(Tc_ref)

        cstr.set('Tc_ref', Tc_ref)
        cstr.set('c_ref', c_ref)
        cstr.set('T_ref', T_ref)

        # Solve the optimization problem
        nlp_ipopt.opt_coll_ipopt_solve()

        # Write to file.
        nlp.export_result_dymola()

        # Load the file we just wrote to file
        res = ResultDymolaTextual('CSTR_CSTR_Opt_MPC_result.txt')

        # Extract variable profiles
        c_res = res.get_variable_data('cstr.c')
        T_res = res.get_variable_data('cstr.T')
        Tc_res = res.get_variable_data('cstr.Tc')

        # Get the first Tc sample
        Tc_ctrl = Tc_res.x[0]

        # Set the value to the model
        sim_model.set('Tc', Tc_ctrl)

        # Simulate
        cstr_sim.simulate(t_mpc[i + 1])

        t_T_sim = cstr_sim.t_sol

        # Set terminal values of the states
        cstr.set('cstr.c_init', cstr_sim.y[0])
        cstr.set('cstr.T_init', cstr_sim.y[1])
        sim_model.set('c_init', cstr_sim.y[0])
        sim_model.set('T_init', cstr_sim.y[1])

        if with_plots:
            plt.figure(4)
            plt.subplot(3, 1, 1)
            plt.plot(t_T_sim, N.array(cstr_sim.y_sol)[:, 0], 'b')

            plt.subplot(3, 1, 2)
            plt.plot(t_T_sim, N.array(cstr_sim.y_sol)[:, 1], 'b')

            if t_mpc[i] == 0:
                plt.subplot(3, 1, 3)
                plt.plot([t_mpc[i], t_mpc[i + 1]], [Tc_ctrl, Tc_ctrl], 'b')
            else:
                plt.subplot(3, 1, 3)
                plt.plot([t_mpc[i], t_mpc[i], t_mpc[i + 1]],
                         [Tc_ctrl_old, Tc_ctrl, Tc_ctrl], 'b')

        Tc_ctrl_old = Tc_ctrl

        i = i + 1

    assert N.abs(Tc_ctrl - 279.097186038194) < 1e-6
    assert N.abs(N.array(cstr_sim.y_sol)[:, 0][-1] - 350.89028563) < 1e-6
    assert N.abs(N.array(cstr_sim.y_sol)[:, 1][-1] - 283.15229948) < 1e-6

    if with_plots:
        plt.figure(4)
        plt.subplot(3, 1, 1)
        plt.ylabel('c')
        plt.plot([0, T_final], [c_0_B, c_0_B], '--')
        plt.grid()
        plt.subplot(3, 1, 2)
        plt.ylabel('T')
        plt.plot([0, T_final], [T_0_B, T_0_B], '--')
        plt.grid()
        plt.subplot(3, 1, 3)
        plt.ylabel('Tc')
        plt.plot([0, T_final], [Tc_0_B, Tc_0_B], '--')
        plt.grid()
        plt.xlabel('t')
        plt.show()