Example #1
0
    def test_KCSD_1D_zero_csd(self):
        """if measured potential is 0, the calculated CSD should be 0"""

        params = {'n_sources': 20, 'dist_density': 20,
                  'source_type': 'gauss_lim'}
        k_zero = KCSD(elec_pos=np.array([[1.0], [2.0], [3.0], [4.0], [5.0]]),
                      sampled_pots=np.array([[0.0], [0.0], [0.0], [0.0], [0.0]]),
                      params=params)
        k_zero.estimate_csd()
        self.assertAlmostEqual(norm(k_zero.solver.estimated_csd), 0.0, places=10)
def csd_est_using_kCSD(probe_loc, lfp_bar, lambd=0.0, sigma = sigma):
    elec_pos = np.expand_dims(probe_loc, axis=1)
    pots = np.expand_dims(lfp_bar, axis=1)
    params = {'gdX': np.diff(probe_loc)[0], 'gdY': np.diff(probe_loc)[0], sigma:sigma, lambd:lambd }

    k = KCSD(elec_pos, pots, params)
    k.solver.lambd = lambd
    k.estimate_pots()
    k.estimate_csd()
    return k.solver.space_X.ravel(), k.solver.estimated_csd.ravel()*sigma
Example #3
0
    def test_KCSD_1D_csd_reconstruction(self):
        """reconstructed csd should be similar to model csd"""

        params = {'sigma': self.sigma, 'source_type': 'gauss_lim',
                  'x_min': self.xmin, 'x_max': self.xmax, 'h': self.h}
        k = KCSD(self.elec_pos, self.meas_pot, params)
        k.estimate_csd()
        """print np.max(k.estimated_csd)
        plot(k.estimated_csd)
        plot(self.true_csd)
        show()
        print k.X_src"""
        for estimated_csd, true_csd in zip(k.solver.estimated_csd, self.true_csd):
            self.assertAlmostEqual(estimated_csd, true_csd, places=1)
Example #4
0
    def test_KCSD_1D_zero_pot(self):
        """if measured potential is 0, the calculated potential should be 0"""

        params = {
            'n_sources': 20,
            'dist_density': 20,
            'source_type': 'gauss_lim'
        }
        k_zero = KCSD(elec_pos=np.array([[1.0], [2.0], [3.0], [4.0], [5.0]]),
                      sampled_pots=np.array([[0.0, 0.0, 0.0, 0.0, 0.0]]).T,
                      params=params)
        k_zero.estimate_pots()
        self.assertAlmostEqual(norm(k_zero.solver.estimated_pots),
                               0.0,
                               places=10)
Example #5
0
    def test_KCSD_1D_pot_reconstruction(self):
        """reconstructed pots should be similar to model pots"""

        params = {'sigma': self.sigma, 'source_type': 'gauss_lim',
                  'x_min': self.xmin, 'x_max': self.xmax,
                  'h': self.h, 'n_src': 20}
        k = KCSD(self.elec_pos, self.meas_pot, params)
        k.estimate_pots()
        """print np.max(k.estimated_pots)
        plot(k.space_X, k.estimated_pots)
        plot(self.x, self.true_pots)
        scatter(k.elec_pos, k.sampled_pots)
        show()"""
        for estimated_pot, true_pot in zip(k.solver.estimated_pots, self.true_pots):
            self.assertAlmostEqual(estimated_pot, true_pot, places=1)
Example #6
0
 def test_KCSD2D_zero_csd(self):
     elec_pos = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
     pots = np.array([[0], [0], [0], [0]])
     k = KCSD(elec_pos, pots)
     k.solver.estimate_csd()
     for csd in k.solver.estimated_csd.flatten():
         self.assertAlmostEqual(csd, 0.0, places=5)
Example #7
0
 def test_KCSD_2D_zero_pot(self):
     elec_pos = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
     pots = np.array([[0], [0], [0], [0]])
     k = KCSD(elec_pos, pots)
     k.solver.estimate_pots()
     for pot in k.solver.estimated_pots.flatten():
         self.assertAlmostEqual(pot, 0.0, places=5)
Example #8
0
    def test_KCSD_1D_cross_validation_two_electrodes(self):
        """cross validation should promote high lambdas in this case"""

        params = {'x_min': 0.0, 'x_max': 1.0, 'gdX': 0.1,
                  'source_type': 'gauss_lim'}
        k = KCSD(elec_pos=np.array([[0.2], [0.7]]),
                 sampled_pots=np.array([[1.0, 0.5]]).T,
                 params=params)
        k.estimate_pots()
        lambdas = np.array([0.1, 0.5, 1.0])
        n_elec = k.solver.elec_pos.shape[0]
        index_generator = LeaveOneOut(n_elec, indices=True)
        k.solver.lambd = cv.choose_lambda(lambdas, k.solver.sampled_pots,
                                          k.solver.k_pot, k.solver.elec_pos,
                                          index_generator)
        self.assertEquals(k.solver.lambd, 1.0)
Example #9
0
 def test_KCSD_3D_zero_pot(self):
     """if the input pots are zero, estimated pots and csd should be zero"""
     elec_pos = np.array([(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0),
                         (0, 1, 1), (1, 1, 0), (1, 0, 1), (1, 1, 1)])
     pots = np.array([[0], [0], [0], [0], [0], [0], [0], [0]])
     params = {
         'gdX': 0.2,
         'gdY': 0.2,
         'gdZ': 0.2,
         'n_src': 10
     }
     k = KCSD(elec_pos, pots, params)
     k.estimate_pots()
     k.estimate_csd()
     for pot in k.solver.estimated_pots.flatten():
         self.assertAlmostEqual(pot, 0.0, places=5)
     for csd in k.solver.estimated_csd.flatten():
         self.assertAlmostEqual(csd, 0.0, places=5)
Example #10
0
    def test_KCSD_1D_cross_validation_two_electrodes(self):
        """cross validation should promote high lambdas in this case"""

        params = {
            'x_min': 0.0,
            'x_max': 1.0,
            'gdX': 0.1,
            'source_type': 'gauss_lim'
        }
        k = KCSD(elec_pos=np.array([[0.2], [0.7]]),
                 sampled_pots=np.array([[1.0, 0.5]]).T,
                 params=params)
        k.estimate_pots()
        lambdas = np.array([0.1, 0.5, 1.0])
        n_elec = k.solver.elec_pos.shape[0]
        index_generator = LeaveOneOut(n_elec)  #, indices=True)
        k.solver.lambd = cv.choose_lambda(lambdas, k.solver.sampled_pots,
                                          k.solver.k_pot, k.solver.elec_pos,
                                          index_generator)
        self.assertEqual(k.solver.lambd, 1.0)
Example #11
0
    def test_KCSD_1D_csd_reconstruction(self):
        """reconstructed csd should be similar to model csd"""

        params = {
            'sigma': self.sigma,
            'source_type': 'gauss_lim',
            'x_min': self.xmin,
            'x_max': self.xmax,
            'h': self.h
        }
        k = KCSD(self.elec_pos, self.meas_pot, params)
        k.estimate_csd()
        """print np.max(k.estimated_csd)
        plot(k.estimated_csd)
        plot(self.true_csd)
        show()
        print k.X_src"""
        for estimated_csd, true_csd in zip(k.solver.estimated_csd,
                                           self.true_csd):
            self.assertAlmostEqual(estimated_csd, true_csd, places=1)
Example #12
0
    def test_KCSD_1D_pot_reconstruction(self):
        """reconstructed pots should be similar to model pots"""

        params = {
            'sigma': self.sigma,
            'source_type': 'gauss_lim',
            'x_min': self.xmin,
            'x_max': self.xmax,
            'h': self.h,
            'n_src': 20
        }
        k = KCSD(self.elec_pos, self.meas_pot, params)
        k.estimate_pots()
        """print np.max(k.estimated_pots)
        plot(k.space_X, k.estimated_pots)
        plot(self.x, self.true_pots)
        scatter(k.elec_pos, k.sampled_pots)
        show()"""
        for estimated_pot, true_pot in zip(k.solver.estimated_pots,
                                           self.true_pots):
            self.assertAlmostEqual(estimated_pot, true_pot, places=1)
Example #13
0
    def test_KCSD_1D_lambda_choice(self):
        """for potentials calculated from model, lambda < 1.0"""

        params = {
            'sigma': self.sigma,
            'source_type': 'gauss_lim',
            'x_min': -5.0,
            'x_max': 10.0,
            'h': self.h
        }
        k = KCSD(self.elec_pos, self.meas_pot, params)
        lambdas = np.array([100.0 / 2**n for n in range(1, 20)])
        n_elec = k.solver.elec_pos.shape[0]
        index_generator = LeaveOneOut(n_elec)  #, indices=True)
        k.solver.lambd = cv.choose_lambda(lambdas, k.solver.sampled_pots,
                                          k.solver.k_pot, k.solver.elec_pos,
                                          index_generator)
        self.assertLess(k.solver.lambd, 1.0)
Example #14
0
 def test_KCSD_3D_zero_pot(self):
     """if the input pots are zero, estimated pots and csd should be zero"""
     elec_pos = np.array([(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0),
                          (0, 1, 1), (1, 1, 0), (1, 0, 1), (1, 1, 1)])
     pots = np.array([[0], [0], [0], [0], [0], [0], [0], [0]])
     params = {'gdX': 0.2, 'gdY': 0.2, 'gdZ': 0.2, 'n_src': 10}
     k = KCSD(elec_pos, pots, params)
     k.estimate_pots()
     k.estimate_csd()
     for pot in k.solver.estimated_pots.flatten():
         self.assertAlmostEqual(pot, 0.0, places=5)
     for csd in k.solver.estimated_csd.flatten():
         self.assertAlmostEqual(csd, 0.0, places=5)
Example #15
0
 def test_KCSD_1D_duplicated_electrode(self):
     """if two electrodes are at the same spot, it should raise exception"""
     with self.assertRaises(Exception):
         k = KCSD(elec_pos=np.array([[0], [0]]), sampled_pots=[[0], [0]])
Example #16
0
 def test_KCSD_1D_incorrect_electrode_number(self):
     """if there are more electrodes than pots, it should raise exception"""
     with self.assertRaises(Exception):
         k = KCSD(elec_pos=np.array([[0], [1], [2]]),
                  sampled_pots=[[0], [1]])