def test_rank1(): random.seed(17) K = 27 M = (1 << (2 * K)) - 1 N = 10000 xs = set([]) for i in xrange(N): xs.add(random.randint(0, M)) N = len(xs) ys = list(xs) ys.sort() S = sparse.sparse(2 * K, array.array('L', ys)) assert S.count() == N for i in xrange(N): r = S.access(ys[i]) assert r is not None assert r == i s = S.rank(ys[i] + 1) assert s == r + 1 for i in xrange(N): x = random.randint(0, M) while x in xs: x = (x + random.randint(1, M)) & M a = S.access(x) assert a is None r = S.rank(x) if r < N: assert ys[r] > x else: assert ys[-1] < x if r > 0: assert ys[r - 1] < x else: assert ys[0] > x
def buildIndex(K, inputs, output): """ Create a new k-mer index. The FASTA files named in the list `inputs` are read in and the `K` length k-mers and their reverse complements are extracted and collated to create an index that maps from k-mer to sequence number (numbering from 0). The `names` member of the KmerIndex object can be used to retrieve the name from the sequence number. """ seqs = [] for inp in inputs: with openFile(inp) as f: seqs += list(readFasta(f)) S = [] nms = [] lens = array.array('I', []) for i in xrange(len(seqs)): (nm, seq) = seqs[i] nms.append(nm) xs = list(kmers(K, seq, True)) xs.sort() uniq(xs) seqs[i] = [nm, xs] lens.append(len(xs)) S += xs S.sort() uniq(S) S = sparse(2*K, S) T = array.array('I', [0 for i in xrange(S.count() + 1)]) for i in xrange(len(seqs)): for x in seqs[i][1]: r = S.rank(x) T[r] += 1 t0 = 0 for i in xrange(len(T)): t1 = t0 + T[i] T[i] = t0 t0 = t1 T0 = [c for c in T] U = array.array('H', [0 for i in xrange(t0)]) for i in xrange(len(seqs)): for x in seqs[i][1]: r = S.rank(x) U[T0[r]] = i T0[r] += 1 with container(output, 'w') as z: writeKmers(K, S.xs, z) n = write32(z, T, 'offsets') z.meta['T'] = n n = write16(z, U, 'postings') z.meta['U'] = n n = write32(z, lens, 'lens') z.meta['lens'] = n z.meta['names'] = nms
def __init__(self, z): self.K = z.meta['K'] S = array.array('L', readKmers(z)) self.S = sparse(2*self.K, S) n = z.meta['T'] self.T = array.array('I', read32(z, 'offsets', n)) n = z.meta['U'] self.U = array.array('H', read16(z, 'postings', n)) n = z.meta['lens'] self.lens = array.array('I', read32(z, 'lens', n)) self.names = z.meta['names']
def main(argv): opts = docopt.docopt(__doc__, argv) L0 = None if opts['-l']: L0 = int(opts['-l']) for inp in opts['<input>']: with container(inp, 'r') as z: K = z.meta['K'] L = L0 if L is None: L = 2*K xs = array.array('L', readKmers(z)) S = sparse(2*K, xs) seen = bitvec(S.count()) for i in xrange(S.count()): if seen[i]: continue x = S.select(i) xb = rc(K, x) xp = succ(K, S, xb) if xp == 1: # x isn't the start of a contig continue pth = [x] seen[i] = 1 xn = succ(K, S, x) while len(xn) == 1: if seen[xn[0]] == 1: break x = S.select(xn[0]) pth.append(x) seen[xn[0]] = 1 xb = rc(K, x) j = S.rank(xb) seen[j] = 1 xn = succ(K, S, x) if len(pth)+K-1 < L: continue s = [render(K, pth[0])] for j in xrange(1, len(pth)): s.append("ACGT"[pth[j]&3]) print '>contig_%d\n%s' % (i, ''.join(s))
def main(argv): opts = docopt.docopt(__doc__, argv) nms = [str(i + 1) for i in xrange(len(probesMTB))] probes = probesMTB if opts['-p'] is not None: nms = [] probes = [] bad = False with open(opts['-p']) as f: i = 0 ln = 0 for l in f: ln += 1 if l[0] == '#': continue i += 1 t = l.split() if len(t) == 1: nms.append(str(i)) probes.append(probe(t[0])) elif len(t) == 2: nms.append(t[0]) probes.append(probe(t[1])) else: bad = True print >> sys.stderr, '%s line %d, badly formatted.' % ( opts['-p'], i) if bad: sys.exit(1) for inp in opts['<input>']: with container(inp, 'r') as z: K = z.meta['K'] xs = readKmers(z) xs = sparse(2 * K, array.array('L', xs)) res = [] for i in xrange(len(probes)): if findProbe(probes[i], K, xs): res.append('1') else: res.append('0') if opts['-l']: for i in xrange(len(nms)): print '%s\t%s\t%s' % (inp, nms[i], res[i]) else: print inp + '\t' + ''.join(res)
def test_rank1(): random.seed(17) K = 27 M = (1 << (2 * K)) - 1 N = 10000 xs = set([]) for i in xrange(N): xs.add(random.randint(0, M)) N = len(xs) xs = list(xs) xs.sort() S = sparse.sparse(2 * K, array.array('L', xs)) assert S.count() == N for i in xrange(N): assert S.rank(xs[i]) == i
def test_empty(): K = 27 S = sparse.sparse(2 * K, array.array('L', [])) assert S.count() == 0 assert S.rank(12345) == 0
def main(argv): opts = docopt.docopt(__doc__, argv) if opts['-X']: K = 27 S = [] N = 0 qacgt = [0, 0, 0, 0] for fn in opts['<input>']: with open(fn) as f: for (nm, seq) in readFasta(f): if len(seq) < K: continue for (x,p) in kmersWithPos(K, seq, True): S.append(x) qacgt[x&3] += 1 N += 1 S.sort() qacgt = [float(c)/float(N) for c in qacgt] S = sparse(2*K, array.array('L', uniq(S))) lens = array.array('I', []) nms = [] seqs = [] n = 0 tmp = [[] for i in xrange(S.count())] for fn in opts['<input>']: with open(fn) as f: for (nm, seq) in readFasta(f): if len(seq) < K: print >> sys.stderr, "warning: `%s' skipped" % (nm,) continue nms.append(nm) seqs.append(seq) lens.append(len(seq)) for (x,p) in kmersWithPos(K, seq, True): r = S.rank(x) tmp[r].append((n, p)) n += 1 T = array.array('I', []) U = array.array('I', []) V = array.array('i', []) t = 0 for nps in tmp: T.append(t) t += len(nps) for (n, p) in nps: U.append(n) V.append(p) T.append(t) del tmp gfn = opts['<genes>'] with container(gfn, 'w') as z: z.meta['K'] = K z.meta['S'] = S.count() write64(z, S.xs, 'S') z.meta['T'] = len(T) write64(z, T, 'T') z.meta['U'] = len(U) write32(z, U, 'U') z.meta['V'] = len(V) write32s(z, V, 'V') z.meta['lens'] = lens z.meta['qacgt'] = qacgt z.meta['nms'] = nms z.meta['seqs'] = seqs return print >> sys.stderr, "loading..." gfn = opts['<genes>'] with container(gfn, 'r') as z: K = z.meta['K'] S = array.array('L', read64(z, 'S', z.meta['S'])) S = sparse(2*K, S) T = array.array('L', read64(z, 'T', z.meta['T'])) U = array.array('I', read32(z, 'U', z.meta['U'])) V = array.array('i', read32s(z, 'V', z.meta['V'])) lens = z.meta['lens'] qacgt = z.meta['qacgt'] nms = z.meta['nms'] seqs = z.meta['seqs'] print >> sys.stderr, "done." for fn in opts['<input>']: L = array.array('B', [0 for i in xrange(S.count())]) Y = array.array('L', [0 for i in xrange(S.count())]) with container(fn, 'r') as z: sacgt = z.meta['acgt'] xs = readKmers(z) X = array.array('L', xs) M = len(X) resolveAll(K, S, L, Y, X) X = sparse(2*K, X) g = sum([qp*sp for (qp, sp) in zip(qacgt, sacgt)]) print >> sys.stderr, "g =", g nm = [null(g, M, j) for j in range(0, K+1)] # counts for computing distribution of prefix lengths cnt = [[0 for j in xrange(K+1)] for i in xrange(len(nms))] # the k-mers that we pulled by lcp from the sample # for each position of each query. P = [array.array('L', [0 for j in xrange(lens[i] - K + 1)]) for i in xrange(len(lens))] # the length of the lcp for each position of each query. Q = [array.array('B', [0 for j in xrange(lens[i] - K + 1)]) for i in xrange(len(lens))] for i in xrange(S.count()): for j in xrange(T[i], T[i+1]): n = U[j] p = V[j] y = Y[i] l = L[i] cnt[n][l] += 1 if p > 0: p -= 1 else: p = -(p + 1) y = rc(K, y) if l > Q[n][p]: Q[n][p] = l P[n][p] = y for i in xrange(len(nms)): # iterate over the queries qc = math.log(K*0.05/float(lens[i] - K + 1)/2) # Link up "de Bruijn" sequences m = (1 << (2*K - 2)) - 1 py = 0 u = unionfind() for j in xrange(lens[i] - K + 1): x = P[i][j] y = x >> 2 if j > 0: d = ham(py, y) if d == 0: u.union(j-1, j) py = x & m # Gather up the de Bruin fragments udx = {} for j in xrange(lens[i] - K + 1): v = u.find(j) if v not in udx: udx[v] = [] udx[v].append(j) # Index the left hand k-mers idxLhs = {} kx = [] for (jx, js) in udx.iteritems(): q = 0 for j in js: q += math.log1p(-nm[Q[i][j]]) if q > math.log(0.05/len(js)): continue kx.append((-len(js), jx)) idxLhs[P[i][js[0]]] = jx kx.sort() # Attempt to link up fragments links = {} for (_, jx) in kx: jR = udx[jx][-1] if jR == lens[i] - K + 1: continue x = P[i][jR] xs = [] lnk = None for k in xrange(100): ys = succ(K, X, x) if len(ys) != 1: break x = ys[0] if x in idxLhs: lnk = idxLhs[x] break xs.append(x) if lnk is not None: links[jx] = xs u.union(jx, lnk) # Gather up the linked fragments vdx = {} for j in [jx for (_, jx) in kx]: v = u.find(j) if v not in vdx: vdx[v] = [] vdx[v].append(j) res = [] for (jxx, jxs) in vdx.iteritems(): # Order the gragments by start position fs = [(udx[jx][0], jx) for jx in jxs] fs.sort() sxs = [] for fj in xrange(len(fs)): (_, jx) = fs[fj] beg = udx[jx][0] end = udx[jx][-1] + 1 if fj == 0: for j in xrange(beg): sxs.append((0, 0)) xs = links.get(jx, None) for j in xrange(beg, end): x = P[i][j] l = Q[i][j] sxs.append((x, l)) if xs: for x in xs: sxs.append((x, 27)) else: if fj < len(fs) - 1: nxt = fs[fj+1][0] else: nxt = lens[i] - K + 1 for j in xrange(end, nxt): sxs.append((0, 0)) seq = [[0, 0, 0, 0] for j in xrange(len(sxs) + K - 1)] for j in xrange(len(sxs)): (x, l) = sxs[j] p = math.log1p(-nm[l]) for k in xrange(K): seq[j + K - k - 1][x&3] += p x >>= 2 ax = [] p = None inf = False for j in xrange(len(seq)): b = 0 for k in xrange(4): if seq[j][k] < qc: b |= 1 << k ax.append(fasta(b)) ssj = sum(seq[j]) if p is None: p = ssj else: p = logAdd(p, ssj) if ssj > -1e-300: inf = True dst = counts2cdf(cnt[i]) (_, kd) = ksDistance2(dst, nm) df = math.ceil(len(seq)/float(K)) if inf: q = 1e300 pv = 0.0 else: q = 2*math.exp(p) pv = chi2(df, q) res.append((pv, q, kd, ''.join(ax))) if len(res) == 0: continue res.sort() if res[0][0] < -2: #ed = lev(seqs[i], res[0][2]) ed = 0 pv = res[0][0]/math.log(10) c2 = res[0][1] kd = res[0][2] a = res[0][3] print '%d\t%d\t%d\t%g\t%g\t%g\t%s\t%s' % (i, lens[i], len(a), kd, c2, pv, nms[i], a) sys.stdout.flush()